profhugodegaris

Species Dominance, Artilects, Artilect War, Cosmists, Terrans, Gigadeath, Essays, Media, etc

deGarisMPC ~120 YouTube Lecture Courses, Dependencies

“deGarisMPC” (MathPhysComp) ~120 Ms, PhD Level YouTube (full text) LECTURE COURSES BEING VIDEOED over the NEXT 25 YEARS, with DEPENDENCIES

For a list of the ~120 “deGarisMPC” (MathPhysComp) (full text) Ms, PhD level YouTube Video Courses, scroll down about half a meter.

The following is a list of the ~120 “deGarisMPC” (MathPhysComp) Masters and PhD level YouTube (full text) Lecture Courses I plan to video over the next 25 years. The list begins with a topics list, a summary list of the courses (one line per course), followed by the detailed list of the courses. Each course has its title, course number, academic level (e.g. M2, PhD1, etc), author(s), number of pages in the text, pre-requisite courses, post-requisite courses and a link to the (full text) at amazon.com in red, and if the course has already been videoed and uploaded to YouTube, its video link is in blue.

The (full text) Link Revolution in Education

Of particular value to students are (full text) links to the “full content” of the text books of the courses. Having access to the full contents of the text books means that students can start teaching themselves the courses NOW, without having to wait for years for me to make the corresponding video lecture course of the subject a student is interested in. (full text) links are a revolution in education. They enable, for example, smart students around the world to teach themselves Ms and PhD level pure math and math physics courses for FREE- truly revolutionary! About 85% of the courses mentioned below have (full text) links to their course text books. Over time, this percentage will only increase as the “pluddites” (“paper luddite” publishing companies) fade away into history. (Of course, I can always increase the percentage by choosing authors whose texts have (full text) links. This is easily done with standard courses, but not with advanced PhD2 texts that are unique.)


“deGarisMPC” TOPICS LIST OF COURSES


PURE MATH

     ANALYSIS

     FIELD THEORY

     FINITE SIMPLE GROUPS

     GEOMETRY

     GROUP THEORY

     KNOT THEORY

     LIE THEORY

     LOGIC

     MANIFOLDS

     RINGS

     SET THEORY

     TOPOLOGY

MATH(EMATICAL)  PHYSICS

     CLASSICAL PHYSICS

     INTERPRETATION OF QUANTUM MECHANICS

     MATH METHODS

     PARTICLE PHYSICS

     QUANTUM MECHANICS

     QUANTUM FIELD THEORY

     RELATIVITY

     STATISTICAL MECHANICS

     STRING THEORY

     SUPERSYMMETRY (SUSY)

     TOPOLOGICAL QUANTUM FIELD THEORY (TQFT)

COMPUTER THEORY

     COMPLEXITY THEORY

     THEORY OF COMPUTATION

     TOPOLOGICAL QUANTUM COMPUTING (TQC)


“deGarisMPC” SUMMARY LIST OF COURSES


(full text) links from Google

Course 1 : “Mathematical Groups,” 1, Jun-Sen, Barnard, Neill, 220pp  (link);  (videolink);

Course 2  : “Quantum Mechanics,” 2, Sen, Davies, Betts, 170pp  (link), (free), (free);  (videolink);

Course 3 : “Introduction to the Theory of Computation,” 3, Sen-M1, Sipser, 420pp    (link), (full text);   (videolink);

Course 4 : “Linear Algebra,” 4, Jun-Sen, Lipschutz, Lipson, 420pp  (link), (full text);

Course 5 : “Undergraduate Algebra,” 5, Sen-M1, Lang, 360pp  (link), (full text tick selected book then download);

Course 6 : “Vector Analysis,” 6, Jun, Spiegel, 235pp  (link), (free), (free), (full text) click on xa.yimg.com;

Course 7 : “Fourier Analysis with Applications to Boundary Value Problems,” 7, Jun-Sen, Spiegel, 180pp  (link), (full text);

Course 8 : “Understanding Analysis,” 8, Jun-Sen, Abbott, 250pp (link), (full text tick selected book then download);

Course 9 : “A Course in Group Theory,” 9, Sen-M1, Humphreys, 270pp  (link), (free), (free), (free), (free), (close to full text);

Course 10 : “Electromagnetics,” 10, Jun, Edminister, 230pp  (link), (full text);

Course 11 : “Basic Abstract Algebra,” 11, M1, Ash, 400pp  (link), (full text);

Course 12 : “Naïve Set Theory,” 12, Jun-Sen, Halmos, 100pp  (link), (full text);

Course 13 : “Special Relativity,” 13, Jun-Sen, French, 270pp  (link), (full text);

Course 14 : “Gödel’s Proof,” 14, Jun-Sen, Nagel, Newman, 145pp  (link), (full text);

Course 15 : “Representations and Characters of Groups,” 15, M1,  James, Liebeck, 410pp  (link), (full text);

Course 16 : “Introduction to High Energy Physics,” 16, Sen-M1, Perkins, 410pp  (link), (full text);

Course 17 : “Quantum Mechanics : A Modern and Concise Introductory Course,” 17, M1, Bes, 240pp  (link), (free), (free), (full text);

Course 18 : “Differential Forms, A Complement to Vector Calculus,” 18, Sen-M1, Weintraub, 240pp  (link), (free), (full text);

Course 19 : “QED : The Strange Theory of Light and Matter,”  19, Jun-Sen, Feynman, 150pp  (link), (free), (full text);

Course 20 : “Engines of Logic,” 20, Jun-Sen, Davis, 240pp  (link), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free);

Course 21 : “Contributions to the Founding of the Theory of Transfinite Numbers,” 21, M1,  Cantor, 210pp  (link), (free), (full text);

Course 22  : “Differential Geometry of Curves and Surfaces,” 22, Sen-M1, do Carmo, 500pp  (link), (free), (free), (free), (free), (full text);

Course 23 : “Tensor Calculus,” 23, Sen-M1, Spain, 120pp  (link), (free), (free), (free), (full text);

Course 24 : “Thermodynamics and Statistical Mechanics,” 24, Jun-Sen, Fitzpatrick, 200pp  (link), (free), (full text);

Course 25 : “General Topology,” 25, Sen-M1, Lipschutz, 230pp  (link), (full text);

Course 26 : “Topology : A Geometric Approach,” 26, M1, Lawson, 380pp  (link), (free), (full text);

Course 27 : “Complex Variables and Applications,” 27, Sen-M1, Brown, Churchill, 380pp  (link), (full text);

Course 28 : “A Primer of Analytic Number Theory,” 28, Sen-M1, Stopple, 370pp  (link), (full text);

Course 29 : “Hyperbolic Geometry,”  29, Sen-M1, Anderson, 220pp  (link), (free), (free), (free), (full text);

Course 30 : “Introduction to Field Theory,” 30, Sen-M1, Adamson, 170pp  (link), (full text);

Course 31 : “Groups and Representations,” 31, M1, Alperin, Bell, 180pp  (link), (full text);

Course 32 : “Galois Theory,”  32, Sen-M1, Rotman, 150pp  (link), (full text);

Course 33 : “Fields and Rings, ” 33, M1, Kaplansky, 200pp  (link), (full text);

Course 34 : “Matrix Groups : An Introduction to Lie Group Theory,” 34, M1, Baker, 320pp  (link), (free), (free), (free), (free), (approx. full text);

Course 35 : “Introduction to Mathematical Logic”  35, M1, Mendelson, 380pp  (link), (free), (free), (free), (full text);

Course 36 : “A First Course in General Relativity,” 36, M1, Schutz,  380pp  (link), (free), (full text);

Course 37 : “Classical Mechanics,” 37, M1, Goldstein, 370pp  (link), (full text);

Course 38 : “Semi-Simple Lie Algebras and their Representations,” 38, M1, Cahn, 150pp  (link), (free), (free), (full text);

Course 39 : “Relativistic Quantum Mechanics : Wave Equations,” 39, M1, Greiner, 340pp  (link), (full text);

Course 40 : “Logic for Mathematicians,” 40, M1, Hamilton, 220pp  (link), (full text);

Course 41 : “Quantum Mechanics : Symmetries,” 41, M1, Greiner, Muller, 360pp  (link), (full text);

Course 42 : “Field Quantization,” 42, M1, Greiner, Reinhardt, 430pp  (link), (full text);

Course 43 : “Lie Algebras in Particle Physics,” 43, M1, Georgi, 310pp  (link), (full text);

Course 44 : “Introduction to Knot Theory,” 44, M1, Crowell, Fox, 160pp  (link), (free), (full text);

Course  45 : “Quantum Electrodynamics”  45, M1, Greiner, Reinhardt, 300pp  (link), (full text);

Course 46 : “Topology,” 46, M1, Munkres, 520pp  (link), (full text);

Course 47 : “Undergraduate Algebraic Geometry,” 47, M1, Reid, 130pp  (link), (full text);

Course 48 : “Introduction to Elementary Particles” 48, Sen-M1, Griffiths, 380pp  (link), (free), (free), (full text);

Course 49 : “The Lie Algebras su(N) : An Introduction,” 49, M1, Pfeifer, 110pp  (link), (full text);

Course 50 : “A First Course in String Theory,” 50, M1, Zwiebach, 550pp  (link), (free), (free), (full text);

Course 51 : “Lie Groups, Lie Algebras, and Representations : An Elementary Introduction ” 51, M1, Hall, 350pp  (link), (free), (free), (free), (free), (full text);

Course 52 : “Introduction to Lie Groups and Lie Algebras,” 52, M1, Sagle, Walde,  350pp  (link), (free), (full text);

Course 53 : “An Introduction to Differentiable Manifolds and Riemannian Geometry,” 53, M1, Boothby, 400pp  (link), (free), (full text);

Course 54 : “Computability and Logic,” 54, M1, Boolos et al, 350pp  (link), (free), (free), (free), (free), (free), (free), (free), (full text);

Course 55 : “Differential Topology,” 55, M1-M2, Hirsch, 220pp  (link), (full text);

Course 56 : “Algebraic Geometry : A First Course,” 56, M1, Harris, 310pp  (link), (full text);

Course 57 : “Quantum Field Theory,” 57, M2, Mandl, Shaw, 350pp  (link), (free), (free), (full text);

Course 58 : “A Course in the Theory of Groups,” 58, M2, Robinson, 460pp  (link), (full text tick selected book then download it);

Course 59 : “The Meaning of Quantum Theory,” 59, M1-M2, Baggott, 220pp  (link), (free), (free), (free), (free), (free), (full text);

Course 60 : “An Introduction to Quantum Computing,” 60, M1, Kaye et al, 260pp  (link), (free), (free), (free), (free), (full text);

Course 61 : “Modern Differential Geometry for Physicists,” 61, M2, Isham, 280pp  (link), (full text);

Course 62 : “Introducing Einstein’s Relativity,” 62, M1-M2, d’Inverno, 370pp  (link), (free), (free), (free), (free), (free), (full text);

Course 63 : “The Theory of Finite Groups : An Introduction,” 63, M2,  Kurzweil, Stellmacher, 370pp  (link), (full text);

Course 64 : “Gauge Theory of the Weak Interactions,” 64, M2,  Greiner, Muller, 300pp  (link), (full text massive resource (> 10,000) of full text physics books);

Course 65 : “Quantum Chromodynamics,” 65, M2, Greiner et al, 550pp  (link), (full text);

Course 66 : “Algebra : A Graduate Course,” 66, M2, Isaacs, 500pp  (link), (free), (full text tick selected book then download it);

Course 67 : “Character Theory of Finite Groups,” 67, M2, Isaacs, 290pp  (link), (free), (free), (full text tick selected book then download it);

Course 68 : “Computability and Complexity : From a Programming Perspective,” 68, M1-M2, Jones, 450pp  (link), (free), (full text);

Course 69 : “Weak Interactions and Modern Particle Theory,” 69, M2, Georgi, 180pp  (link), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (full text);

Course 70 : “An Invitation to Algebraic Geometry,”  70, M2, Smith et al, 150pp  (link), (free), (full text tick selected book then download it);

Course 71 : “Commutative Algebra, Vol. 1,” 71, M2, Zariski, Samuel, 320pp  (link), (full text tick selected book then download it);

Course 72 : “Algebraic Geometry,” 72, M2, Hartshorne, 460pp  (link), (full text);

Course 73 : “Categories for the Working Mathematician,” 73, M2, MacLane, 290pp  (link), (full text);

Course 74 : “Nonlocality in Quantum Physics,” 74, M2, Grib, 220pp  (link), (free), (free), (free),  (full text);

Course 75 : “Gauge Theory of Elementary Particle Physics,” 75, M2, Cheng, Li, 510pp  (link), (full text);

Course 76 : “Algebraic Topology,” 76, M2, Hatcher, 320pp  (link), (full text);

Course 77 : “Introduction to Riemann Surfaces,” 77, M2, Springer, 300pp   (link), (free), (free), (free), (full text);

Course 78 : “Geometry, Topology and Physics,” 78, M2, Nakahara, 490pp  (link), (full text);

Course 79 : “From Holomorphic Functions to Complex Manifolds,” 79, M2, Fritzsche, Grauert, 370pp  (link), (full text);

Course 80 : “An Invitation to Morse Theory,” 80, M2, Nicolaescu, 230pp  (link), (full text);

Course 81 : “Noncommutative Rings,” 81, M2, Herstein, 190pp  (link), (free), (full text tick selected book then download it);

Course 82 : “Finite Group Theory,” 82, PhD1, Aschbacher, 270pp  (link), (full text tick selected book then download it);

Course 83 : “Measure Theory ,” 83, M2, Doob, 200pp  (link), (free), (free), (free), (full text);

Course 84 : “Simple Groups of Lie Type,” 84, M2, Carter, 310pp  (link), (free), (full text tick selected book then download it);

Course 85 : “Supersymmetry in Particle Physics,” 85, PhD1, Aitchison, 210pp  (link), (full text);

Course 86 : “Infinite Dimensional Lie Algebras,” 86, PhD1, Kac, 350pp  (link), (free), (free), (free), (full text tick selected book then download it);

Course 87 : “Supersymmetry for Mathematicians : An Introduction,” 87, PhD1, Varadarajan, 300pp  (link), (full text);

Course 88 : “Finite Groups,” 88, PhD1, Gorenstein, 500pp  (link), (free), (free), (full text tick selected book then download it);

Course 88b : “Lorentzian Wormholes,” 88b, PhD1, Visser, 370pp  (link)  (free)  (free full text);

Course 89 : “Sporadic Groups,” 89, PhD1, Aschbacher, 300pp  (link), (free), (free), (free), (free), (free), (free), (free), (free);

Course 90 : “Supersymmetric Gauge Field Theory and String Theory,” 90, PhD1, Bailin, Love, 320pp  (link), (free), (free), (free), (free), (free), (free), (full text massive resource (> 10,000) of full text physics books);

Course 91 : “An Introduction to Nonassociative Algebras,” 91, PhD1, Schafer, 150pp  (link), (free), (free), (free), (free), (partial text);

Course 92 : “String Theory : Vol. 1, An Introduction to the Bosonic String,” 92, PhD1, Polchinski, 360pp  (link), (full text);

Course 93 : “On Formally Undecidable Propositions of Principia Mathematica and Related Systems,” 93, PhD1, Godel, 70pp  (link), (full text), (full text);

Course 94 : “String Theory : Vol. 2, Superstring Theory and Beyond,” 94, PhD1, Polchinski, 510pp  (link), (full text);

Course 95 : “Knots, Links, Braids and 3-Manifolds : An Introduction to the New Invariants in Low-Dimensional Topology,” 95, PhD1, Prasolov, Sossinsky, 230pp  (link), (free), (free), (free), (free), (free), (free);

Course 96 : “The Topology of 4-Manifolds,” 96, PhD1, Kirby, 100pp  (link), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (full text);

Course 97 : “Quantum Gauge Theories : A True Ghost Story,” 97, PhD1, Scharf, 240pp  (link), (free), (free), (free), (free);

Course 98 : “Calabi-Yau Manifolds and Related Geometries,” 98, PhD1, Gross et al, 230pp  (link), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free);  {There are many more hits on Google using “Calabi-Yau Manifolds”]

Course 99 : “Finite Simple Groups : An Introduction to their Classification,” 99, PhD1, Gorenstein, 310pp  (link), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free);

Course 100 : “The Classification of Finite Simple Groups, Vol. 1 : Groups of Noncharacteristic 2 Type,” 100, PhD1, Gorenstein, 470pp  (link), (free), (free);

Course 101 : “The Classification of Finite Simple Groups : Vol. 2, Groups of Characteristic 2 Type,” 101, PhD2, Aschbacher et al, 310pp  (link), (free), (free), (free), (free), (free), (free), (free);

Course 102 : “The Classification of Quasithin Groups” 102, PhD2, Aschbacher, Smith, 1220pp  (link1), (link2), (free), (free), (full text);

Course 103 : “The Geometry of Four-Manifolds, 103, PhD2, Donaldson, Kronheimer, 430pp  (link), (free), (free), (free), (free), (free), (free), (free), (free);

Course 104 : “The Local Structure of Finite Groups of Characteristic 2 Type,” 104, PhD2, Gorenstein, Lyons, 720pp  (link), (free), (free);

Course 105 : “The Classification of the Finite Simple Groups : Vol. 1, Overview, Outline of Proof,” 105, PhD2, Gorenstein, Lyons, Solomon, 140pp  (link), (full text tick selected book then download it);

Course 106 : “The Classification of the Finite Simple Groups : Vol. 2, General Group Theory,” 106, PhD2, Gorenstein, Lyons, Solomon, 200pp (link), (full text tick selected book then download it);

Course 107 : “The Classification of the Finite Simple Groups : Vol. 3, Almost Simple K-Groups,” 107, PhD2, Gorenstein, Lyons, Solomon, 400pp  (link);

Course 108 : “Differential Topology and Quantum Field Theory,” 108, PhD2, Nash, 360pp  (link), (full text);

Course 109 : “The Classification of the Finite Simple Groups : Vol. 4, Uniqueness Theorems,” 109, PhD2,  Gorenstein, Lyons, Solomon, 330pp (link);

Course 110 : “Supersymmetry and Supergravity,” 110, PhD2, Wess, Bagger, 260pp  (link), (full text);

Course 111 : “The Classification of the Finite Simple Groups : Vol. 5, The Generic Case,” 111, PhD2, Gorenstein, Lyons, Solomon, 460pp  (link);

Course 112 : “The Classification of the Finite Simple Groups : Vol. 6, The Special Odd Case,” 112, PhD2,  Gorenstein, Lyons, Solomon, 520pp  (link), (free);

Course 113 : “The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds,” 113, PhD2, Morgan, 130pp  (link), (free), (partial text);

Course 114 : “Notes on Seiberg-Witten Theory,” 114, PhD2, Nicolaescu, 470pp  (link), (free), (full text);

Course 115 : “Frobenius Algebras and 2D Topological Quantum Field Theories,” 115, PhD2, Kock, 230pp  (link), (free), (free), (full text);

Course 116 : “Topological Quantum Field Theory and Four Manifolds,” 116, PhD2, 210pp  Labastida  (link), (free), (free), (free), (free), (free), (free);

Course 117 : “Topological Quantum Computation,” 117, PhD2, Wang, 110pp  (link), (free), (full text);

Course 118 : “Introduction to Topological Quantum Computation,” 118, PhD, Pachos, 200pp  (link), (full text);

Course 119 : “Vertex Operator Algebras and the Monster,” 119, PhD2, Frenkel et al, 480pp (link), (free), (free), (free), (free), (free), (free), (free), (free);

Course 120 : “Moonshine beyond the Monster : The Bridge Connecting Algebra, Modular Forms and Physics,” 120, PhD2, Gannon, 430pp (link), (free), (free), (free), (free);


“deGarisMPC” DETAILED LIST of COURSES and DEPENDENCIES


COURSE 1 : “Mathematical Groups,” 1, Jun-Sen, Barnard, Neill, 220pp  (link);  (videolink);

Course Number : 1

Level : Jun, Sen

Author(s) : Barnard, Neill

Pre-Requisites :

Post-Requisites :

Course 9 : “A Course in Group Theory,” 9, Sen-M1, Humphreys, 270pp  (link), (free), (free), (free), (free), (close to full text);


COURSE 2 : “Quantum Mechanics,” 2, Sen, Davies, Betts, 170pp  (link);  (videolink);

Course Number : 2

Level : Sen

Author(s) : Davies, Betts

Pre-Requisites :

Post-Requisites :

Course 17 : “Quantum Mechanics : A Modern and Concise Introductory Course,” 17, M1, Bes, 240pp  (link), (free), (free), (full text);


COURSE 3 : “Introduction to the Theory of Computation,” 3, Sen-M1, Sipser, 420pp    (link), (full text);   (videolink);

Course Number : 3

Level : Sen, M1

Author(s) : Sipser

Pre-Requisites :

Post-Requisites :

Course 54 : “Computability and Logic,” 54, M1, Boolos et al, 350pp  (link), (free), (free), (free), (free), (free), (free), (free), (full text);

Course 60 : “An Introduction to Quantum Computing,” 60, M1, Kaye et al, 260pp  (link), (free), (free), (free), (free), (full text);


COURSE 4 : “Linear Algebra,” 4, Jun-Sen, Lipschutz, Lipson, 420pp  (link), (full text);

Course Number : 4

Level : Jun-Sen

Author(s) : Lipschutz, Lipson

Pre-Requisites :

Post-Requisites :

Course 5 : “Undergraduate Algebra,” 5, Sen-M1, Lang, 360pp  (link), (full text);


COURSE 5 : Course 5 : “Undergraduate Algebra,” 5, Sen-M1, Lang, 360pp  (link), (full text);

Course Number : 5

Level : Sen-M1

Author(s) : Lang

Pre-Requisites :

Course 4 : “Linear Algebra,” 4, Jun-Sen, Lipschutz, Lipson, 420pp  (link), (full text);

Post-Requisites :

Course 11 : “Basic Abstract Algebra,” 11, M1, Ash, 400pp  (link), (full text);


COURSE 6 : “Vector Analysis,” 6, Jun, Spiegel, 235pp  (link), (free), (free), (full text) click on xa.yimg.com;

Course Number : 6

Level : Jun

Author(s) : Spiegel

Pre-Requisites :

Post-Requisites :

Course 10 : “Electromagnetics,” 10, Jun, Edminister, 230pp  (link), (full text);

Course 13 : “Special Relativity,” 13, Jun-Sen, French, 270pp  (link), (full text);


COURSE 7 : “Fourier Analysis with Applications to Boundary Value Problems,” 7, Jun-Sen, Spiegel, 180pp  (link), (full text);

Course Number : 7

Level : Jun-Sen

Author(s) : Spiegel

Pre-Requisites :

Course 6 : “Vector Analysis,” 6, Jun, Spiegel, 235pp  (link), (free), (free), (full text) click on xa.yimg.com

Post-Requisites :

Course 17 : “Quantum Mechanics : A Modern and Concise Introductory Course,” 17, M1, Bes, 240pp  (link), (free), (free), (full text);

Course 27 : “Complex Variables and Applications,” 27, Sen-M1, Brown, Churchill, 380pp  (link), (full text);


COURSE 8 : “Basic Analysis : Introduction to Real Analysis,” 8, Jun-Sen, Lebl, 260pp (link), (full text);

Course Number : 8

Level : Jun-Sen

Author(s) : Lebl

Pre-Requisites :

Post-Requisites :

Course 27 : “Complex Variables and Applications,” 27, Sen-M1, Brown, Churchill, 380pp  (link), (full text);


COURSE 9 : “A Course in Group Theory,” 9, Sen-M1, Humphreys, 270pp  (link), (free), (free), (free), (free), (close to full text);

Course Number : 9

Level : Sen-M1

Author(s) : Humphreys

Pre-Requisites :

Course 1 : “Mathematical Groups,” 1, Jun-Sen, Barnard, Neill, 220pp  (link);  (videolink);

Post-Requisites :

Course 15 : “Representations and Characters of Groups,” 15, M1,  James, Liebeck, 410pp  (link), (full text);

Course 58 : “A Course in the Theory of Groups,” 58, M2, Robinson, 460pp  (link), (full text) tick selected book then download it);


COURSE 10 : “Electromagnetics,” 10, Jun, Edminister, 230pp  (link), (full text);

Course Number : 10

Level : Jun

Author(s) : Edminister

Pre-Requisites :

Course 6 : “Vector Analysis,” 6, Jun, Spiegel, 235pp  (link), (free), (free), (full text) click on xa.yimg.com;

Post-Requisites :

Course 13 : “Special Relativity,” 13, Jun-Sen, French, 270pp  (link), (full text);


COURSE  11 : “Basic Abstract Algebra,” 11, M1, Ash, 400pp  (link), (full text);

Course Number : 11

Level : M1

Author(s) : Ash

Pre-Requisites :

Course 5 : “Undergraduate Algebra,” 5, Sen-M1, Lang, 360pp  (link), (full text);

Post-Requisites :

Course 66 : “Algebra : A Graduate Course,” 66, M2, Isaacs, 500pp  (link), (free), (full text tick selected book then download it);


COURSE 12 :  “Naïve Set Theory,” 12, Jun-Sen, Halmos, 100pp  (link), (full text);

Course Number : 12

Level : Jun-Sen

Author(s) : Halmos

Pre-Requisites : none

Post-Requisites :

Course 21 : “Contributions to the Founding of the Theory of Transfinite Numbers,” 21, M1,  Cantor, 210pp  (link), (free), (full text);


COURSE 13 : “Special Relativity,” 13, Jun-Sen, French, 270pp  (link), (full text);

Course Number : 13

Level : Jun-Sen

Author(s) : French

Pre-Requisites :

Course 6 : “Vector Analysis,” 6, Jun, Spiegel, 235pp  (link), (free), (free), (full text) click on xa.yimg.com;

Course 10 : “Electromagnetics,” 10, Jun, Edminister, 230pp  (link), (full text);

Post-Requisites :

Course 36 : “A First Course in General Relativity,” 36, M1, Schutz,  380pp  (link), (free), (full text);

Course 39 : “Relativistic Quantum Mechanics : Wave Equations,” 39, M1, Greiner, 340pp  (link), (full text);


COURSE 14 : “Gödel’s Proof,” 14, Jun-Sen, Nagel, Newman, 145pp  (link), (full text);

Course Number : 14

Level : Jun-Sen

Author(s) : Nagel, Newman

Pre-Requisites :

Post-Requisites :

Course 93 : “On Formally Undecidable Propositions of Principia Mathematica and Related Systems,” 93, PhD1, Godel, 70pp  (link), (full text), (full text);


COURSE 15 : “Representations and Characters of Groups,” 15, M1,  James, Liebeck, 410pp  (link), (full text);

Course Number : 15

Level : M1

Author(s) : James, Liebeck

Pre-Requisites :

Course 9 : “A Course in Group Theory,” 9, Sen-M1, Humphreys, 270pp  (link), (free), (free), (free), (free), (close to full text);

Post-Requisites :

Course 67 : “Character Theory of Finite Groups,” 67, M2, Isaacs, 290pp  (link), (free), (free), (full text tick selected book then download it);

Course 82 : “Finite Group Theory,” 82, PhD1, Aschbacher, 270pp  (link), (full text tick selected book then download it);

Course 88 : “Finite Groups,” 88, PhD1, Gorenstein, 500pp  (link), (free), (free), (full text tick selected book then download it);


COURSE 16 : “Introduction to High Energy Physics,” 16, Sen-M1, Perkins, 410pp  (link), (full text);

Course Number : 16

Level : Sen-M1

Author(s) : Perkins

Pre-Requisites :

Course 13 : “Special Relativity,” 13, Jun-Sen, French, 270pp  (link), (full text);

Post-Requisites :

Course 48 : “Introduction to Elementary Particles” 48, Sen-M1, Griffiths, 380pp  (link), (free), (free), (full text);


COURSE 17 :  “Quantum Mechanics : A Modern and Concise Introductory Course,” 17, M1, Bes, 240pp  (link), (free), (free), (full text);

Course Number : 17

Level : M1

Author(s) : Bes

Pre-Requisites :

Course 2  : “Quantum Mechanics,” 2, Sen, Davies, Betts, 170pp  (link), (free), (free);  (videolink);

Course 7 : “Fourier Analysis with Applications to Boundary Value Problems,” 7, Jun-Sen, Spiegel, 180pp  (link), (full text);

Post-Requisites :

Course 39 : “Relativistic Quantum Mechanics : Wave Equations,” 39, M1, Greiner, 340pp  (link), (full text);


COURSE 18 : “Differential Forms, A Complement to Vector Calculus,” 18, Sen-M1, Weintraub, 240pp  (link), (free), (full text);

Course Number : 18

Level : Sen-M1

Author(s) : Weintraub

Pre-Requisites :

Course 6 : “Vector Analysis,” 6, Jun, Spiegel, 235pp  (link), (free), (free), (full text) click on xa.yimg.com;

Post-Requisites : –


COURSE 19 :  “QED : The Strange Theory of Light and Matter,”  19, Jun-Sen, Feynman, 150pp  (link), (free), (full text);

Course Number : 19

Level : Jun-Sen

Author(s) : Feynman

Pre-Requisites :

Post-Requisites :

Course  45 : “Quantum Electrodynamics”  45, M1, Greiner, Reinhardt, 300pp  (link), (full text);


COURSE 20 : “Engines of Logic,” 20, Jun-Sen, Davis, 240pp  (link), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free);

Course Number : 20

Level : Jun-Sen

Author(s) : Davis

Pre-Requisites :

Post-Requisites :

Course 54 : “Computability and Logic,” 54, M1, Boolos et al, 350pp  (link), (free), (free), (free), (free), (free), (free), (free), (full text);


COURSE 21 : “Contributions to the Founding of the Theory of Transfinite Numbers,” 21, M1,  Cantor, 210pp  (link), (free), (full text);

Course Number : 21

Level : M1

Author(s) : Cantor

Pre-Requisites :

Course 12 : “Naïve Set Theory,” 12, Jun-Sen, Halmos, 100pp  (link), (full text);

Post-Requisites :


COURSE 22 : “Differential Geometry of Curves and Surfaces,” 22, Sen-M1, do Carmo, 500pp  (link), (free), (free), (free), (free), (full text);

Course Number : 22

Level : Sen-M1

Author(s) : do Carmo

Pre-Requisites :

Course 6 : “Vector Analysis,” 6, Jun, Spiegel, 235pp  (link), (free), (free), (full text) click on xa.yimg.com;

Post-Requisites :

Course 25 : “General Topology,” 25, Sen-M1, Lipschutz, 230pp  (link), (full text);


COURSE 23 : “Tensor Calculus,” 23, Sen-M1, Spain, 120pp  (link), (free), (free), (free), (full text);

Course Number : 23

Level : Sen-M1

Author(s) : Spain

Pre-Requisites :

Course 4 : “Linear Algebra,” 4, Jun-Sen, Lipschutz, Lipson, 420pp  (link), (full text);

Course 13 : “Special Relativity,” 13, Jun-Sen, French, 270pp  (link), (full text);

Course 22  : “Differential Geometry of Curves and Surfaces,” 22, Sen-M1, do Carmo, 500pp  (link), (free), (free), (free), (free), (full text);

Course 25 : “General Topology,” 25, Sen-M1, Lipschutz, 230pp  (link), (full text);

Post-Requisites :

Course 36 : “A First Course in General Relativity,” 36, M1, Schutz,  380pp  (link), (free), (full text);


COURSE 24 : “Thermodynamics and Statistical Mechanics,” 24, Jun-Sen, Fitzpatrick, 200pp  (link), (free), (full text);

Course Number : 24

Level : Jun-Sen

Author(s) : Fitzpatrick

Pre-Requisites :

Post-Requisites :


COURSE 25 : “General Topology,” 25, Sen-M1, Lipschutz, 230pp  (link), (full text);

Course Number : 25

Level : Sen-M1

Author(s) : Lipschutz

Pre-Requisites :

Course 4 : “Linear Algebra,” 4, Jun-Sen, Lipschutz, Lipson, 420pp  (link), (full text);

Post-Requisites :

Course 26 : “Topology : A Geometric Approach,” 26, M1, Lawson, 380pp  (link), (free), (full text);


COURSE 26 : “Topology : A Geometric Approach,” 26, M1, Lawson, 380pp  (link), (free), (full text);

Course Number : 26

Level : M1

Author(s) : Lawson

Pre-Requisites :

Course 25 : “General Topology,” 25, Sen-M1, Lipschutz, 230pp  (link), (full text);

Post-Requisites :

Course 46 : “Topology,” 46, M1, Munkres, 520pp  (link), (full text);


COURSE 27 : “Complex Variables and Applications,” 27, Sen-M1, Brown, Churchill, 380pp  (link), (full text);

Course Number : 27

Level : Sen-M1

Author(s) : Brown, Churchill

Pre-Requisites :

Course 8 : “Basic Analysis : Introduction to Real Analysis,” 8, Jun-Sen, Lebl, 260pp (link), (full text);

Post-Requisites :

Course  45 : “Quantum Electrodynamics”  45, M1, Greiner, Reinhardt, 300pp  (link), (full text);

Course 77 : “Introduction to Riemann Surfaces,” 77, M2, Springer, 300pp   (link), (free), (free), (free), (full text);


COURSE 28 : “A Primer of Analytic Number Theory,” 28, Sen-M1, Stopple, 370pp  (link), (full text);

Course Number : 28

Level : Sen-M1

Author(s) : Stopple

Pre-Requisites :

Course 27 : “Complex Variables and Applications,” 27, Sen-M1, Brown, Churchill, 380pp  (link), (full text);

Post-Requisites :


COURSE 29 :  “Hyperbolic Geometry,”  29, Sen-M1, Anderson, 220pp  (link), (free), (free), (free), (full text);

Course Number : 29

Level : Sen-M1

Author(s) : Anderson

Pre-Requisites :

Course 1 : “Mathematical Groups,” 1, Jun-Sen, Barnard, Neill, 220pp  (link);  (videolink);

Course 27 : “Complex Variables and Applications,” 27, Sen-M1, Brown, Churchill, 380pp  (link), (full text);

Post-Requisites :


COURSE 30 : “Introduction to Field Theory,” 30, Sen-M1, Adamson, 170pp  (link), (full text);

Course Number : 30

Level : Sen-M1

Author(s) : Adamson

Pre-Requisites :

Course 5 : “Undergraduate Algebra,” 5, Sen-M1, Lang, 360pp  (link), (full text);

Post-Requisites :

Course 32 : “Galois Theory,”  32, Sen-M1, Rotman, 150pp  (link), (full text);


COURSE 31 : “Groups and Representations,” 31, M1, Alperin, Bell, 180pp  (link), (full text);

Course Number : 31

Level : M1

Author(s) : Alperin, Bell

Pre-Requisites :

Course 9 : “A Course in Group Theory,” 9, Sen-M1, Humphreys, 270pp  (link), (free), (free), (free), (free), (close to full text);

Post-Requisites :

Course 58 : “A Course in the Theory of Groups,” 58, M2, Robinson, 460pp  (link), (full text tick selected book then download it);


COURSE 32 : “Galois Theory,”  32, Sen-M1, Rotman, 150pp  (link), (full text);

Course Number : 32

Level : Sen-M1

Author(s) : Rotman

Pre-Requisites :

Course 9 : “A Course in Group Theory,” 9, Sen-M1, Humphreys, 270pp  (link), (free), (free), (free), (free), (close to full text);

Course 30 : “Introduction to Field Theory,” 30, Sen-M1, Adamson, 170pp  (link), (full text);

Post-Requisites :

Course 99 : “Finite Simple Groups : An Introduction to their Classification,” 99, PhD1, Gorenstein, 310pp  (link), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free);


COURSE 33 : “Fields and Rings, ” 33, M1, Kaplansky, 200pp  (link), (full text);

Course Number : 33

Level : M1

Author(s) : Kaplansky

Pre-Requisites :

Course 5 : “Undergraduate Algebra,” 5, Sen-M1, Lang, 360pp  (link), (full text);

Post-Requisites :

Course 81 : “Noncommutative Rings,” 81, M2, Herstein, 190pp  (link), (free), (full text tick selected book then download it);


COURSE 34 : “Matrix Groups : An Introduction to Lie Group Theory,” 34, M1, Baker, 320pp  (link), (free), (free), (free), (free), (approx. full text);

Course Number : 34

Level : M1

Author(s) : Baker

Pre-Requisites :

Course 1 : “Mathematical Groups,” 1, Jun-Sen, Barnard, Neill, 220pp  (link);  (videolink);

Course 4 : “Linear Algebra,” 4, Jun-Sen, Lipschutz, Lipson, 420pp  (link), (full text);

Course 5 : “Undergraduate Algebra,” 5, Sen-M1, Lang, 360pp  (link), (full text);

Post-Requisites :

Course 49 : “The Lie Algebras su(N) : An Introduction,” 49, M1, Pfeifer, 110pp  (link), (full text);


COURSE 35 : “Introduction to Mathematical Logic”  35, M1, Mendelson, 380pp  (link), (free), (free), (free), (full text);

Course Number : 35

Level : M1

Author(s) : Mendelson

Pre-Requisites :

Course 14 : “Gödel’s Proof,” 14, Jun-Sen, Nagel, Newman, 145pp  (link), (full text);

Post-Requisites :

Course 40 : “Logic for Mathematicians,” 40, M1, Hamilton, 220pp  (link), (full text);


COURSE 36 : “A First Course in General Relativity,” 36, M1, Schutz,  380pp  (link), (free), (full text);

Course Number : 36

Level : M1

Author(s) : Schutz

Pre-Requisites :

Course 6 : “Vector Analysis,” 6, Jun, Spiegel, 235pp  (link), (free), (free), (full text) click on xa.yimg.com;

Course 13 : “Special Relativity,” 13, Jun-Sen, French, 270pp  (link), (full text);

Course 22  : “Differential Geometry of Curves and Surfaces,” 22, Sen-M1, do Carmo, 500pp  (link), (free), (free), (free), (free), (full text);

Course 23 : “Tensor Calculus,” 23, Sen-M1, Spain, 120pp  (link), (free), (free), (free), (full text);

Post-Requisites :

Course 62 : “Introducing Einstein’s Relativity,” 62, M1-M2, d’Inverno, 370pp  (link), (free), (free), (free), (full text);


COURSE 37 : “Classical Mechanics,” 37, M1, Goldstein, 370pp  (link), (full text);

Course Number : 37

Level : M1

Author(s) : Goldstein

Pre-Requisites :

Course 13 : “Special Relativity,” 13, Jun-Sen, French, 270pp  (link), (full text);

Post-Requisites :

Course 42 : “Field Quantization,” 42, M1, Greiner, Reinhardt, 430pp  (link), (full text);


COURSE 38 : “Semi-Simple Lie Algebras and their Representations,” 38, M1, Cahn, 150pp  (link), (free), (free), (full text);

Course Number : 38

Level : M1

Author(s) : Cahn

Pre-Requisites :

Course 1 : “Mathematical Groups,” 1, Jun-Sen, Barnard, Neill, 220pp  (link);  (videolink);

Course 15 : “Representations and Characters of Groups,” 15, M1,  James, Liebeck, 410pp  (link), (full text);

Post-Requisites :

Course 52 : “Introduction to Lie Groups and Lie Algebras,” 52, M1, Sagle, Walde,  350pp  (link), (free), (full text);


COURSE 39 : “Relativistic Quantum Mechanics : Wave Equations,” 39, M1, Greiner, 340pp  (link), (full text);

Course Number : 39

Level : M1

Author(s) : Greiner

Pre-Requisites :

Course 13 : “Special Relativity,” 13, Jun-Sen, French, 270pp  (link), (full text);

Course 2  : “Quantum Mechanics,” 2, Sen, Davies, Betts, 170pp  (link), (free), (free);  (videolink);

Post-Requisites :

Course 42 : “Field Quantization,” 42, M1, Greiner, Reinhardt, 430pp  (link), (full text);


COURSE 40 : “Logic for Mathematicians,” 40, M1, Hamilton, 220pp  (link), (full text);

Course Number : 40

Level : M1

Author(s) : Hamilton

Pre-Requisites :

Course 35 : “Introduction to Mathematical Logic”  35, M1, Mendelson, 380pp  (link), (free), (free), (free), (full text);

Post-Requisites :

Course 54 : “Computability and Logic,” 54, M1, Boolos et al, 350pp  (link), (free), (free), (free), (free), (free), (free), (free), (full text);


COURSE 41 :  “Quantum Mechanics : Symmetries,” 41, M1, Greiner, Muller, 360pp  (link), (full text);

Course Number : 41

Level : M1

Author(s) : Greiner, Muller

Pre-Requisites :

Course 15 : “Representations and Characters of Groups,” 15, M1,  James, Liebeck, 410pp  (link), (full text);

Course 16 : “Introduction to High Energy Physics,” 16, Sen-M1, Perkins, 410pp  (link), (full text);

Course 17 : “Quantum Mechanics : A Modern and Concise Introductory Course,” 17, M1, Bes, 240pp  (link), (free), (free), (full text);

Course 34 : “Matrix Groups : An Introduction to Lie Group Theory,” 34, M1, Baker, 320pp  (link), (free), (free), (free), (free), (approx. full text);

Post-Requisites :

Course 43 : “Lie Algebras in Particle Physics,” 43, M1, Georgi, 310pp  (link), (full text);


COURSE 42 :  “Field Quantization,” 42, M1, Greiner, Reinhardt, 430pp  (link), (full text);

Course Number : 42

Level : M1

Author(s) : Greiner, Reinhardt

Pre-Requisites :

Course 39 : “Relativistic Quantum Mechanics : Wave Equations,” 39, M1, Greiner, 340pp  (link), (full text);

Post-Requisites :

Course  45 : “Quantum Electrodynamics”  45, M1, Greiner, Reinhardt, 300pp  (link), (full text);


COURSE 43 : “Lie Algebras in Particle Physics,” 43, M1, Georgi, 310pp  (link), (full text);

Course Number : 43

Level : M1

Author(s) : Georgi

Pre-Requisites :

Course 41 : “Quantum Mechanics : Symmetries,” 41, M1, Greiner, Muller, 360pp  (link), (full text);

Post-Requisites :

Course 48 : “Introduction to Elementary Particles” 48, Sen-M1, Griffiths, 380pp  (link), (free), (free), (full text);


COURSE 44 : “Introduction to Knot Theory,” 44, M1, Crowell, Fox, 160pp  (link), (free), (full text);

Course Number : 44

Level : M1

Author(s) : Crowell, Fox

Pre-Requisites :

Post-Requisites :

Course 95 : “Knots, Links, Braids and 3-Manifolds : An Introduction to the New Invariants in Low-Dimensional Topology,” 95, PhD1, Prasolov, Sossinsky, 230pp  (link), (free), (free), (free), (free), (free), (free);


COURSE 45 : “Quantum Electrodynamics”  45, M1, Greiner, Reinhardt, 300pp  (link), (full text);

Course Number : 45

Level : M1

Author(s) : Greiner, Reinhardt

Pre-Requisites :

Course 39 : “Relativistic Quantum Mechanics : Wave Equations,” 39, M1, Greiner, 340pp  (link), (full text);

Course 42 : “Field Quantization,” 42, M1, Greiner, Reinhardt, 430pp  (link), (full text);

Post-Requisites :

Course 64 : “Gauge Theory of the Weak Interactions,” 64, M2,  Greiner, Muller, 300pp  (link), (full text massive resource (> 10,000) of full text physics books);


COURSE 46 : “Topology,” 46, M1, Munkres, 520pp  (link), (full text);

Course Number : 46

Level : M1

Author(s) : Munkres

Pre-Requisites :

Course 25 : “General Topology,” 25, Sen-M1, Lipschutz, 230pp  (link), (full text);

Course 26 : “Topology : A Geometric Approach,” 26, M1, Lawson, 380pp  (link), (free), (full text);

Post-Requisites :

Course 56 : “Algebraic Geometry : A First Course,” 56, M1, Harris, 310pp  (link), (full text);


COURSE 47 : “Undergraduate Algebraic Geometry,” 47, M1, Reid, 130pp  (link), (full text);

Course Number : 47

Level : M1

Author(s) : Reid

Pre-Requisites :

Course 5 : “Undergraduate Algebra,” 5, Sen-M1, Lang, 360pp  (link), (full text);

Course 26 : “Topology : A Geometric Approach,” 26, M1, Lawson, 380pp  (link), (free), (full text);

Post-Requisites :

Course 56 : “Algebraic Geometry : A First Course,” 56, M1, Harris, 310pp  (link), (full text);


COURSE 48 : “Introduction to Elementary Particles” 48, Sen-M1, Griffiths, 380pp  (link), (free), (free), (full text);

Course Number : 48

Level : Sen-M1

Author(s) : Griffiths

Pre-Requisites :

Course 16 : “Introduction to High Energy Physics,” 16, Sen-M1, Perkins, 410pp  (link), (full text);

Post-Requisites :

Course 64 : “Gauge Theory of the Weak Interactions,” 64, M2,  Greiner, Muller, 300pp  (link), (full text massive resource (> 10,000) of full text physics books);

Course 65 : “Quantum Chromodynamics,” 65, M2, Greiner et al, 550pp  (link), (full text);


COURSE 49 : “The Lie Algebras su(N) : An Introduction,” 49, M1, Pfeifer, 110pp  (link), (full text);

Course Number : 49

Level : M1

Author(s) : Pfeifer

Pre-Requisites :

Course 34 : “Matrix Groups : An Introduction to Lie Group Theory,” 34, M1, Baker, 320pp  (link), (free), (free), (free), (free), (approx. full text);

Post-Requisites :

Course 51 : “Lie Groups, Lie Algebras, and Representations : An Elementary Introduction ” 51, M1, Hall, 350pp  (link), (free), (free), (free), (free), (full text);

Course 52 : “Introduction to Lie Groups and Lie Algebras,” 52, M1, Sagle, Walde,  350pp  (link), (free), (full text);


COURSE 50 : “A First Course in String Theory,” 50, M1, Zwiebach, 550pp  (link), (free), (free), (full text);

Course Number : 50

Level : M1

Author(s) : Zwiebach

Pre-Requisites :

Course 2  : “Quantum Mechanics,” 2, Sen, Davies, Betts, 170pp  (link), (free), (free);  (videolink);

Course 13 : “Special Relativity,” 13, Jun-Sen, French, 270pp  (link), (full text);

Course 37 : “Classical Mechanics,” 37, M1, Goldstein, 370pp  (link), (full text);

Post-Requisites :

Course 90 : “Supersymmetric Gauge Field Theory and String Theory,” 90, PhD1, Bailin, Love, 320pp  (link), (free), (free), (free), (free), (free), (free), (full text massive resource (> 10,000) of full text physics books);


COURSE 51 : “Lie Groups, Lie Algebras, and Representations : An Elementary Introduction ” 51, M1, Hall, 350pp  (link), (free), (free), (free), (free), (full text);

Course Number : 51

Level : M1

Author(s) : Hall

Pre-Requisites :

Course 49 : “The Lie Algebras su(N) : An Introduction,” 49, M1, Pfeifer, 110pp  (link), (full text);

Post-Requisites :

Course 52 : “Introduction to Lie Groups and Lie Algebras,” 52, M1, Sagle, Walde,  350pp  (link), (free), (full text);


COURSE 52 : “Introduction to Lie Groups and Lie Algebras,” 52, M1, Sagle, Walde,  350pp  (link), (free), (full text);

Course Number : 52

Level : M1

Author(s) : Sagle, Walde

Pre-Requisites :

Course 51 : “Lie Groups, Lie Algebras, and Representations : An Elementary Introduction ” 51, M1, Hall, 350pp  (link), (free), (free), (free), (free), (full text);

Post-Requisites :

Course 51 : “Lie Groups, Lie Algebras, and Representations : An Elementary Introduction ” 51, M1, Hall, 350pp  (link), (free), (free), (free), (free), (full text);

Course 86 : “Infinite Dimensional Lie Algebras,” 86, PhD1, Kac, 350pp  (link), (free), (free), (free), (full text tick selected book then download it);


COURSE 53 :  “An Introduction to Differentiable Manifolds and Riemannian Geometry,” 53, M1, Boothby, 400pp  (link), (free), (full text);

Course Number : 53

Level : M1

Author(s) : Boothby

Pre-Requisites :

Course 22  : “Differential Geometry of Curves and Surfaces,” 22, Sen-M1, do Carmo, 500pp  (link), (free), (free), (free), (free), (full text);

Post-Requisites :

Course 61 : “Modern Differential Geometry for Physicists,” 61, M2, Isham, 280pp  (link), (full text);


COURSE 54 : “Computability and Logic,” 54, M1, Boolos et al, 350pp  (link), (free), (free), (free), (free), (free), (free), (free), (full text);

Course Number : 54

Level : M1

Author(s) : Boolos et al

Pre-Requisites :

Course 3 : “Introduction to the Theory of Computation,” 3, Sen-M1, Sipser, 420pp    (link), (full text);   (videolink);

Post-Requisites :

Course 93 : “On Formally Undecidable Propositions of Principia Mathematica and Related Systems,” 93, PhD1, Godel, 70pp  (link), (full text), (full text);


COURSE 55 : “Differential Topology,” 55, M1-M2, Hirsch, 220pp  (link), (full text);

Course Number : 55

Level : M1

Author(s) : Hirsch

Pre-Requisites :

Course 26 : “Topology : A Geometric Approach,” 26, M1, Lawson, 380pp  (link), (free), (full text);

Course 53 : “An Introduction to Differentiable Manifolds and Riemannian Geometry,” 53, M1, Boothby, 400pp  (link), (free), (full text);

Post-Requisites :

Course 108 : “Differential Topology and Quantum Field Theory,” 108, PhD2, Nash, 360pp  (link), (full text);


COURSE 56 : “Algebraic Geometry : A First Course,” 56, M1, Harris, 310pp  (link), (full text);

Course Number : 56

Level : M1

Author(s) : Harris

Pre-Requisites :

Course 47 : “Undergraduate Algebraic Geometry,” 47, M1, Reid, 130pp  (link), (full text);

Post-Requisites :

Course 70 : “An Invitation to Algebraic Geometry,”  70, M2, Smith et al, 150pp  (link), (free), (full text tick selected book then download it);

Course 72 : “Algebraic Geometry,” 72, M2, Hartshorne, 460pp  (link), (full text);


COURSE 57 : “Quantum Field Theory,” 57, M2, Mandl, Shaw, 350pp  (link), (free), (free), (full text);

Course Number : 57

Level : M2

Author(s) : Mandl, Shaw

Pre-Requisites :

Course 17 : “Quantum Mechanics : A Modern and Concise Introductory Course,” 17, M1, Bes, 240pp  (link), (free), (free), (full text);

Post-Requisites :

Course 64 : “Gauge Theory of the Weak Interactions,” 64, M2,  Greiner, Muller, 300pp  (link), (full text massive resource (> 10,000) of full text physics books);


COURSE 58 : “A Course in the Theory of Groups,” 58, M2, Robinson, 460pp  (link), (full text tick selected book then download it);

Course Number : 58

Level : M2

Author(s) : Robinson

Pre-Requisites :

Course 9 : “A Course in Group Theory,” 9, Sen-M1, Humphreys, 270pp  (link), (free), (free), (free), (free), (close to full text);

Course 15 : “Representations and Characters of Groups,” 15, M1,  James, Liebeck, 410pp  (link), (full text);

Post-Requisites :

Course 82 : “Finite Group Theory,” 82, PhD1, Aschbacher, 270pp  (link), (full text tick selected book then download it);


COURSE 59 : “The Meaning of Quantum Theory,” 59, M1-M2, Baggott, 220pp  (link), (free), (free), (free), (free), (free), (full text);

Course Number : 59

Level : M1-M2

Author(s) : Baggott

Pre-Requisites :

Course 17 :

“Quantum Mechanics : A Modern and Concise Introductory Course,” 17, M1, Bes, 240pp  (link), (free), (free), (full text);

Post-Requisites :

Course 74 : “Nonlocality in Quantum Physics,” 74, M2, Grib, 220pp  (link), (free), (free), (free),  (full text);


COURSE 60 : “An Introduction to Quantum Computing,” 60, M1, Kaye et al, 260pp  (link), (free), (free), (free), (free), (full text);

Course Number : 60

Level : M1

Author(s) : Kaye et al

Pre-Requisites :

Course 3 : “Introduction to the Theory of Computation,” 3, Sen-M1, Sipser, 420pp    (link), (full text);   (videolink);

Course 17 : “Quantum Mechanics : A Modern and Concise Introductory Course,” 17, M1, Bes, 240pp  (link), (free), (free), (full text);

Post-Requisites :

Course 117 : “Topological Quantum Computation,” 117, PhD2, Wang, 110pp  (link), (free), (full text);

Course 118 : “Introduction to Topological Quantum Computation,” 118, PhD, Pachos, 200pp  (link), (full text);


COURSE 61 : “Modern Differential Geometry for Physicists,” 61, M2, Isham, 280pp  (link), (full text);

Course Number : 61

Level : M2

Author(s) : Isham

Pre-Requisites :

Course 53 : “An Introduction to Differentiable Manifolds and Riemannian Geometry,” 53, M1, Boothby, 400pp  (link), (free), (full text);

Post-Requisites :


COURSE 62 :  “Introducing Einstein’s Relativity,” 62, M1-M2, d’Inverno, 370pp  (link), (free), (free), (free), (full text);

Course Number : 62

Level : M1-M2

Author(s) : d’Inverno

Pre-Requisites :

Course 36 : “A First Course in General Relativity,” 36, M1, Schutz,  380pp  (link), (free), (full text);

Post-Requisites :


COURSE 63 :“The Theory of Finite Groups : An Introduction,” 63, M2,  Kurzweil, Stellmacher, 370pp  (link), (full text);

Course Number : 63

Level : M2

Author(s) : Kurzweil, Stellmacher

Pre-Requisites :

Course 58 : “A Course in the Theory of Groups,” 58, M2, Robinson, 460pp  (link), (full text tick selected book then download it);

Post-Requisites :

Course 82 : “Finite Group Theory,” 82, PhD1, Aschbacher, 270pp  (link), (full text tick selected book then download it);


COURSE 64 : “Gauge Theory of the Weak Interactions,” 64, M2,  Greiner, Muller, 300pp  (link), (full text massive resource (> 10,000) of full text physics books);

Course Number : 64

Level : M2

Author(s) : Greiner, Muller

Pre-Requisites :

Course  45 : “Quantum Electrodynamics”  45, M1, Greiner, Reinhardt, 300pp  (link), (full text);

Post-Requisites :

Course 65 : “Quantum Chromodynamics,” 65, M2, Greiner et al, 550pp  (link), (full text);


COURSE 65 : “Quantum Chromodynamics,” 65, M2, Greiner et al, 550pp  (link), (full text);

Course Number : 65

Level : M2

Author(s) : Greiner et al

Pre-Requisites :

Course 64 : “Gauge Theory of the Weak Interactions,” 64, M2,  Greiner, Muller, 300pp  (link), (full text massive resource (> 10,000) of full text physics books);

Post-Requisites :


COURSE 66 : “Algebra : A Graduate Course,” 66, M2, Isaacs, 500pp  (link), (free), (full text tick selected book then download it);

Course Number : 66

Level : M2

Author(s) : Isaacs

Pre-Requisites :

Course 11 : “Basic Abstract Algebra,” 11, M1, Ash, 400pp  (link), (full text);

Post-Requisites :

Course 73 : “Categories for the Working Mathematician,” 73, M2, MacLane, 290pp  (link), (full text);


COURSE 67 : “Character Theory of Finite Groups,” 67, M2, Isaacs, 290pp  (link), (free), (free), (full text tick selected book then download it);

Course Number : 67

Level : M2

Author(s) : Isaacs

Pre-Requisites :

Course 15 : “Representations and Characters of Groups,” 15, M1,  James, Liebeck, 410pp  (link), (full text);

Course 31 : “Groups and Representations,” 31, M1, Alperin, Bell, 180pp  (link), (full text);

Post-Requisites :

Course 88 : “Finite Groups,” 88, PhD1, Gorenstein, 500pp  (link), (free), (free), (full text tick selected book then download it);


COURSE 68 : “Computability and Complexity : From a Programming Perspective,” 68, M1-M2, Jones, 450pp  (link), (free), (full text);

Course Number : 68

Level : M1-M2

Author(s) : Jones

Pre-Requisites :

Course 3 : “Introduction to the Theory of Computation,” 3, Sen-M1, Sipser, 420pp    (link), (full text);   (videolink);

Post-Requisites :


COURSE 69 : “Weak Interactions and Modern Particle Theory,” 69, M2, Georgi, 180pp  (link), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (full text);

Course Number : 69

Level : M2

Author(s) : Georgi

Pre-Requisites :

Course 48 : “Introduction to Elementary Particles” 48, Sen-M1, Griffiths, 380pp  (link), (free), (free), (full text);

Post-Requisites :


COURSE 70 : “An Invitation to Algebraic Geometry,”  70, M2, Smith et al, 150pp  (link), (free), (full text tick selected book then download it);

Course Number : 70

Level : M2

Author(s) : Smith et al

Pre-Requisites :

Course 56 : “Algebraic Geometry : A First Course,” 56, M1, Harris, 310pp  (link), (full text);

Post-Requisites :

Course 72 : “Algebraic Geometry,” 72, M2, Hartshorne, 460pp  (link), (full text);


COURSE 71 :  “Commutative Algebra, Vol. 1,” 71, M2, Zariski, Samuel, 320pp  (link), (full text tick selected book then download it);

Course Number : 71

Level : M2

Author(s) : Zariski, Samuel

Pre-Requisites :

Course 66 : “Algebra : A Graduate Course,” 66, M2, Isaacs, 500pp  (link), (free), (full text tick selected book then download it);

Post-Requisites :


COURSE 72 : “Algebraic Geometry,” 72, M2, Hartshorne, 460pp  (link), (full text);

Course Number : 72

Level : M2

Author(s) : Hartshorne

Pre-Requisites :

Course 56 : “Algebraic Geometry : A First Course,” 56, M1, Harris, 310pp  (link), (full text);

Post-Requisites : none


COURSE 73 : “Categories for the Working Mathematician,” 73, M2, MacLane, 290pp  (link), (full text);

Course Number : 73

Level : M2

Author(s) : MacLane

Pre-Requisites :

Course 66 : “Algebra : A Graduate Course,” 66, M2, Isaacs, 500pp  (link), (free), (full text tick selected book then download it);

Post-Requisites :

Course 82 : “Finite Group Theory,” 82, PhD1, Aschbacher, 270pp  (link), (full text tick selected book then download it);


COURSE 74 : “Nonlocality in Quantum Physics,” 74, M2, Grib, 220pp  (link), (free), (free), (free),  (full text);

Course Number : 74

Level : M2

Author(s) : Grib

Pre-Requisites :

Course 17 : “Quantum Mechanics : A Modern and Concise Introductory Course,” 17, M1, Bes, 240pp  (link), (free), (free), (full text);

Post-Requisites :


COURSE 75 :  “Gauge Theory of Elementary Particle Physics,” 75, M2, Cheng, Li, 510pp  (link), (full text);

Course Number : 75

Level : M2

Author(s) : Cheng, Li

Pre-Requisites :

Course 57 : “Quantum Field Theory,” 57, M2, Mandl, Shaw, 350pp  (link), (free), (free), (full text);

Post-Requisites :


COURSE 76 : “Algebraic Topology,” 76, M2, Hatcher, 320pp  (link), (full text);

Course Number : 76

Level : M2

Author(s) : Hatcher

Pre-Requisites :

Course 46 : “Topology,” 46, M1, Munkres, 520pp  (link), (full text);

Post-Requisites : none


COURSE 77 : Course 77 : “Introduction to Riemann Surfaces,” 77, M2, Springer, 300pp   (link), (free), (free), (free), (full text);

Course Number : 77

Level : M2

Author(s) : Springer

Pre-Requisites :

Course 27 : “Complex Variables and Applications,” 27, Sen-M1, Brown, Churchill, 380pp  (link), (full text);

Post-Requisites :


COURSE 78 :“Geometry, Topology and Physics,” 78, M2, Nakahara, 490pp  (link), (full text);

Course Number : 78

Level : M2

Author(s) : Nakahara

Pre-Requisites :

Course 61 : “Modern Differential Geometry for Physicists,” 61, M2, Isham, 280pp  (link), (full text);

Course 76 : “Algebraic Topology,” 76, M2, Hatcher, 320pp  (link), (full text);

Post-Requisites :


COURSE 79 :“From Holomorphic Functions to Complex Manifolds,” 79, M2, Fritzsche, Grauert, 370pp  (link), (full text);

Course Number : 79

Level : M2

Author(s) : Fritzsche, Grauert

Pre-Requisites :

Course 27 : “Complex Variables and Applications,” 27, Sen-M1, Brown, Churchill, 380pp  (link), (full text);

Post-Requisites :

Course 98 : “Calabi-Yau Manifolds and Related Geometries,” 98, PhD1, Gross et al, 230pp  (link), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free);  {There are many more hits on Google using “Calabi-Yau Manifolds”]


COURSE 80 : “An Invitation to Morse Theory,” 80, M2, Nicolaescu, 230pp  (link), (full text);

Course Number : 80

Level : M2

Author(s) : Nicolaescu

Pre-Requisites :

Course 61 : “Modern Differential Geometry for Physicists,” 61, M2, Isham, 280pp  (link), (full text);

Course 76 : “Algebraic Topology,” 76, M2, Hatcher, 320pp  (link), (full text);

Post-Requisites :

Course 114 : “Notes on Seiberg-Witten Theory,” 114, PhD2, Nicolaescu, 470pp  (link), (free), (full text);


COURSE 81 : “Noncommutative Rings,” 80, M2, Herstein, 190pp  (link);

Course Number : 81

Level : M2

Author(s) : Herstein

Pre-Requisites :

Course 66 : “Algebra : A Graduate Course,” 66, M2, Isaacs, 500pp  (link), (free), (full text tick selected book then download it);

Post-Requisites :


COURSE 82 : “Finite Group Theory,” 82, PhD1, Aschbacher, 270pp  (link), (full text tick selected book then download it);

Course Number : 82

Level : PhD1

Author(s) : Aschbacher

Pre-Requisites :

Course 63 : “The Theory of Finite Groups : An Introduction,” 63, M2,  Kurzweil, Stellmacher, 370pp  (link), (full text);

Post-Requisites :

Course 88 : “Finite Groups,” 88, PhD1, Gorenstein, 500pp  (link), (free), (free), (full text tick selected book then download it);


COURSE 83 : Course 83 : “Measure Theory ,” 83, M2, Doob, 200pp  (link), (free), (free), (free), (full text);

Course Number : 83

Level : M2

Author(s) : Doob

Pre-Requisites :

Course 12 : “Naïve Set Theory,” 12, Jun-Sen, Halmos, 100pp  (link), (full text);

Post-Requisites :


COURSE 84 : “Simple Groups of Lie Type,” 84, M2, Carter, 310pp  (link), (free), (full text tick selected book then download it);

Course Number : 84

Level : M2

Author(s) : Carter

Pre-Requisites :

Course 52 : “Introduction to Lie Groups and Lie Algebras,” 52, M1, Sagle, Walde,  350pp  (link), (free), (full text);

Post-Requisites :

Course 88 : “Finite Groups,” 88, PhD1, Gorenstein, 500pp  (link), (free), (free), (full text tick selected book then download it);


COURSE 85 : “Supersymmetry in Particle Physics,” 85, PhD1, Aitchison, 210pp  (link), (full text);

Course Number : 85

Level : PhD1

Author(s) : Aitchison

Pre-Requisites :

Course 48 : “Introduction to Elementary Particles” 48, Sen-M1, Griffiths, 380pp  (link), (free), (free), (full text);

Post-Requisites :

Course 87 : “Supersymmetry for Mathematicians : An Introduction,” 87, PhD1, Varadarajan, 300pp  (link), (full text);


COURSE 86 : “Infinite Dimensional Lie Algebras,” 86, PhD1, Kac, 350pp  (link), (free), (free), (free), (full text tick selected book then download it);

Course Number : 86

Level : PhD1

Author(s) : Kac

Pre-Requisites :

Course 51 : “Lie Groups, Lie Algebras, and Representations : An Elementary Introduction ” 51, M1, Hall, 350pp  (link), (free), (free), (free), (free), (full text);

Post-Requisites :


COURSE 87 :  “Supersymmetry for Mathematicians : An Introduction,” 87, PhD1, Varadarajan, 300pp  (link), (full text);

Course Number : 87

Level : PhD1

Author(s) : Varadarajan

Pre-Requisites :

Course 85 : “Supersymmetry in Particle Physics,” 85, PhD1, Aitchison, 210pp  (link), (full text);

Post-Requisites :


COURSE 88 : “Finite Groups,” 88, PhD1, Gorenstein, 500pp  (link), (free), (free), (full text tick selected book then download it);

Course Number : 88

Level : PhD1

Author(s) : Gorenstein

Pre-Requisites :

Course 82 : “Finite Group Theory,” 82, PhD1, Aschbacher, 270pp  (link), (full text tick selected book then download it);

Post-Requisites :

Course 89 : “Sporadic Groups,” 89, PhD1, Aschbacher, 300pp  (link), (free), (free), (free), (free), (free), (free), (free), (free);


COURSE 89 : “Sporadic Groups,” 89, PhD1, Aschbacher, 300pp  (link), (free), (free), (free), (free), (free), (free), (free), (free);

Course Number : 89

Level : PhD1

Author(s) : Aschbacher

Pre-Requisites :

Course 88 : “Finite Groups,” 88, PhD1, Gorenstein, 500pp  (link), (free), (free), (full text tick selected book then download it);

Post-Requisites :


COURSE 90 :“Supersymmetric Gauge Field Theory and String Theory,” 90, PhD1, Bailin, Love, 320pp  (link), (free), (free), (free), (free), (free), (free), (full text massive resource (> 10,000) of full text physics books);

Course Number : 90

Level : PhD1

Author(s) : Bailin, Love

Pre-Requisites :

Course 87 : “Supersymmetry for Mathematicians : An Introduction,” 87, PhD1, Varadarajan, 300pp  (link), (full text);

Post-Requisites :

Course 92 : “String Theory : Vol. 1, An Introduction to the Bosonic String,” 92, PhD1, Polchinski, 360pp  (link), (full text);


COURSE 91 : “An Introduction to Nonassociative Algebras,” 91, PhD1, Schafer, 150pp  (link), (free), (free), (free), (free), (partial text);

Course Number : 91

Level : PhD1

Author(s) : Schafer

Pre-Requisites :

Course 66 : “Algebra : A Graduate Course,” 66, M2, Isaacs, 500pp  (link), (free), (full text tick selected book then download it);

Post-Requisites :


COURSE 92 : “String Theory : Vol. 1, An Introduction to the Bosonic String,” 92, PhD1, Polchinski, 360pp  (link), (full text);

Course Number : 92

Level : PhD1

Author(s) : Polchinski

Pre-Requisites :

Course 90 : “Supersymmetric Gauge Field Theory and String Theory,” 90, PhD1, Bailin, Love, 320pp  (link), (free), (free), (free), (free), (free), (free), (full text massive resource (> 10,000) of full text physics books);

Post-Requisites :

Course 94 : “String Theory : Vol. 2, Superstring Theory and Beyond,” 94, PhD1, Polchinski, 510pp  (link), (full text);


COURSE 93 : “On Formally Undecidable Propositions of Principia Mathematica and Related Systems,” 93, PhD1, Godel, 70pp  (link), (full text), (full text);

Course Number : 93

Level : PhD1

Author(s) : Godel

Pre-Requisites :

Course 14 : “Gödel’s Proof,” 14, Jun-Sen, Nagel, Newman, 145pp  (link), (full text);

Course 40 : “Logic for Mathematicians,” 40, M1, Hamilton, 220pp  (link), (full text);

Post-Requisites :


COURSE 94 :  “String Theory : Vol. 2, Superstring Theory and Beyond,” 94, PhD1, Polchinski, 510pp  (link), (full text);

Course Number : 94

Level : PhD1

Author(s) : Polchinski

Pre-Requisites :

Course 92 : “String Theory : Vol. 1, An Introduction to the Bosonic String,” 92, PhD1, Polchinski, 360pp  (link), (full text);

Post-Requisites :


COURSE 95 :“Knots, Links, Braids and 3-Manifolds : An Introduction to the New Invariants in Low-Dimensional Topology,” 95, PhD1, Prasolov, Sossinsky, 230pp  (link), (free), (free), (free), (free), (free), (free);

Course Number : 95

Level : PhD1

Author(s) : Prasolov, Sossinsky

Pre-Requisites :

Course 44 : “Introduction to Knot Theory,” 44, M1, Crowell, Fox, 160pp  (link), (free), (full text);

Course 53 : “An Introduction to Differentiable Manifolds and Riemannian Geometry,” 53, M1, Boothby, 400pp  (link), (free), (full text);

Post-Requisites :

Course 96 : “The Topology of 4-Manifolds,” 96, PhD1, Kirby, 100pp  (link), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (full text);


COURSE 96 : “The Topology of 4-Manifolds,” 96, PhD1, Kirby, 100pp  (link), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (full text);

Course Number : 96

Level : PhD1

Author(s) : Kirby

Pre-Requisites :

Course 95 : “Knots, Links, Braids and 3-Manifolds : An Introduction to the New Invariants in Low-Dimensional Topology,” 95, PhD1, Prasolov, Sossinsky, 230pp  (link), (free), (free), (free), (free), (free), (free);

Post-Requisites :

Course 103 : “The Geometry of Four-Manifolds, 103, PhD2, Donaldson, Kronheimer, 430pp  (link), (free), (free), (free), (free), (free), (free), (free), (free);


COURSE 97 :  “Quantum Gauge Theories : A True Ghost Story,” 97, PhD1, Scharf, 240pp  (link), (free), (free), (free), (free);

Course Number : 97

Level : PhD1

Author(s) : Scharf

Pre-Requisites :

Course 65 : “Quantum Chromodynamics,” 65, M2, Greiner et al, 550pp  (link), (full text);

Post-Requisites :


COURSE 98 : “Calabi-Yau Manifolds and Related Geometries,” 98, PhD1, Gross et al, 230pp  (link), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free);  {There are many more hits on Google using “Calabi-Yau Manifolds”]

Course Number : 98

Level : PhD1

Author(s) : Gross et al

Pre-Requisites :

Course 103 : “The Geometry of Four-Manifolds, 103, PhD2, Donaldson, Kronheimer, 430pp  (link), (free), (free), (free), (free), (free), (free), (free), (free);

Post-Requisites :


COURSE 99 : “Finite Simple Groups : An Introduction to their Classification,” 99, PhD1, Gorenstein, 310pp  (link), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free);

Course Number : 99

Level : PhD1

Author(s) : Gorenstein

Pre-Requisites :

Course 88 : “Finite Groups,” 88, PhD1, Gorenstein, 500pp  (link), (free), (free), (full text tick selected book then download it);

Post-Requisites :

Course 100 : “The Classification of Finite Simple Groups, Vol. 1 : Groups of Noncharacteristic 2 Type,” 100, PhD1, Gorenstein, 470pp  (link), (free), (free);


COURSE 100 :Course 100 : “The Classification of Finite Simple Groups, Vol. 1 : Groups of Noncharacteristic 2 Type,” 100, PhD1, Gorenstein, 470pp  (link), (free), (free);

Course Number : 100

Level : PhD1

Author(s) : Gorenstein

Pre-Requisites :

Course 99 : “Finite Simple Groups : An Introduction to their Classification,” 99, PhD1, Gorenstein, 310pp  (link), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free);

Post-Requisites :

Course 101 : “The Classification of Finite Simple Groups : Vol. 2, Groups of Characteristic 2 Type,” 101, PhD2, Aschbacher et al, 310pp  (link), (free), (free), (free), (free), (free), (free), (free);


COURSE 101 : “The Classification of Finite Simple Groups : Vol. 2, Groups of Characteristic 2 Type,” 101, PhD2, Aschbacher et al, 310pp  (link), (free), (free), (free), (free), (free), (free), (free);

Course Number : 101

Level : PhD2

Author(s) : Aschbacher et al

Pre-Requisites :

Course 99 : “Finite Simple Groups : An Introduction to their Classification,” 99, PhD1, Gorenstein, 310pp  (link), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free), (free);

Course 100 : “The Classification of Finite Simple Groups, Vol. 1 : Groups of Noncharacteristic 2 Type,” 100, PhD1, Gorenstein, 470pp  (link), (free), (free);

Post-Requisites :

Course 104 : “The Local Structure of Finite Groups of Characteristic 2 Type,” 104, PhD2, Gorenstein, Lyons, 720pp  (link), (free), (free);


COURSE 102 :  “The Classification of Quasithin Groups” 102, PhD2, Aschbacher, Smith, 1220pp  (link1), (link2), (free), (free), (full text);

Course Number : 102

Level : PhD2

Author(s) : Aschbacher, Smith,

Pre-Requisites :

Course 101 : “The Classification of Finite Simple Groups : Vol. 2, Groups of Characteristic 2 Type,” 101, PhD2, Aschbacher et al, 310pp  (link), (free), (free), (free), (free), (free), (free), (free);

Post-Requisites : Course 105 : “The Classification of the Finite Simple Groups : Vol. 1, Overview, Outline of Proof,” 105, PhD2, Gorenstein, Lyons, Solomon, 140pp  (link), (full text tick selected book then download it);


COURSE 103 :  “The Geometry of Four-Manifolds, 103, PhD2, Donaldson, Kronheimer, 430pp  (link), (free), (free), (free), (free), (free), (free), (free), (free);

Course Number : 103

Level : PhD2

Author(s) : Donaldson, Kronheimer

Pre-Requisites :

Course 61 : “Modern Differential Geometry for Physicists,” 61, M2, Isham, 280pp  (link), (full text);

Post-Requisites :

Course 114 : “Notes on Seiberg-Witten Theory,” 114, PhD2, Nicolaescu, 470pp  (link), (free), (full text);


COURSE 104 :  “The Local Structure of Finite Groups of Characteristic 2 Type,” 104, PhD2, Gorenstein, Lyons, 720pp  (link), (free), (free);

Course Number : 104

Level : PhD2

Author(s) : Gorenstein, Lyons

Pre-Requisites :

Course 101 : “The Classification of Finite Simple Groups : Vol. 2, Groups of Characteristic 2 Type,” 101, PhD2, Aschbacher et al, 310pp  (link), (free), (free), (free), (free), (free), (free), (free);

Post-Requisites :

Course 105 : “The Classification of the Finite Simple Groups : Vol. 1, Overview, Outline of Proof,” 105, PhD2, Gorenstein, Lyons, Solomon, 140pp  (link), (full text tick selected book then download it);


COURSE 105 : “The Classification of the Finite Simple Groups : Vol. 1, Overview, Outline of Proof,” 105, PhD2, Gorenstein, Lyons, Solomon, 140pp  (link), (full text tick selected book then download it);

Course Number : 105

Level : PhD2

Author(s) : Gorenstein, Lyons, Solomon

Pre-Requisites :

Course 101 : “The Classification of Finite Simple Groups : Vol. 2, Groups of Characteristic 2 Type,” 101, PhD2, Aschbacher et al, 310pp  (link), (free), (free), (free), (free), (free), (free), (free);

Post-Requisites :

Course 106 : “The Classification of the Finite Simple Groups : Vol. 2, General Group Theory,” 106, PhD2, Gorenstein, Lyons, Solomon, 200pp (link), (full text tick selected book then download it);


COURSE 106 : “The Classification of the Finite Simple Groups : Vol. 2, General Group Theory,” 106, PhD2, Gorenstein, Lyons, Solomon, 200pp (link), (full text tick selected book then download it);

Course Number : 106

Level : PhD2

Author(s) : Gorenstein, Lyons, Solomon

Pre-Requisites :

Course 105 : “The Classification of the Finite Simple Groups : Vol. 1, Overview, Outline of Proof,” 105, PhD2, Gorenstein, Lyons, Solomon, 140pp  (link), (full text tick selected book then download it);

Post-Requisites :

Course 107 : “The Classification of the Finite Simple Groups : Vol. 3, Almost Simple K-Groups,” 107, PhD2, Gorenstein, Lyons, Solomon, 400pp  (link);


COURSE 107 : “The Classification of the Finite Simple Groups : Vol. 3, Almost Simple K-Groups,” 107, PhD2, Gorenstein, Lyons, Solomon, 400pp  (link);

Course Number : 107

Level : PhD2

Author(s) : Gorenstein, Lyons, Solomon

Pre-Requisites :

Course 106 : “The Classification of the Finite Simple Groups : Vol. 2, General Group Theory,” 106, PhD2, Gorenstein, Lyons, Solomon, 200pp (link), (full text tick selected book then download it);

Post-Requisites :

Course 109 : “The Classification of the Finite Simple Groups : Vol. 4, Uniqueness Theorems,” 109, PhD2,  Gorenstein, Lyons, Solomon, 330pp (link);


COURSE 108 :  “Differential Topology and Quantum Field Theory,” 108, PhD2, Nash, 360pp  (link), (full text);

Course Number : 108

Level : PhD2

Author(s) : Nash

Pre-Requisites :

Course 61 : “Modern Differential Geometry for Physicists,” 61, M2, Isham, 280pp  (link), (full text);

Course 72 : “Algebraic Geometry,” 72, M2, Hartshorne, 460pp  (link), (full text);

Course 77 : “Introduction to Riemann Surfaces,” 77, M2, Springer, 300pp   (link), (free), (free), (free), (full text);

Course 76 : “Algebraic Topology,” 76, M2, Hatcher, 320pp  (link), (full text);

Course 80 : “An Invitation to Morse Theory,” 80, M2, Nicolaescu, 230pp  (link), (full text);

Post-Requisites :


COURSE 109 : “The Classification of the Finite Simple Groups : Vol. 4, Uniqueness Theorems,” 108, PhD2,  Gorenstein, Lyons, Solomon, 330pp (link);

Course Number : 109

Level : PhD2

Author(s) : Gorenstein, Lyons, Solomon

Pre-Requisites :

Course 107 : “The Classification of the Finite Simple Groups : Vol. 3, Almost Simple K-Groups,” 107, PhD2, Gorenstein, Lyons, Solomon, 400pp  (link);

Post-Requisites :

Course 111 : “The Classification of the Finite Simple Groups : Vol. 5, The Generic Case,” 111, PhD2, Gorenstein, Lyons, Solomon, 460pp  (link);


COURSE 110 : “Supersymmetry and Supergravity,” 110, PhD2, Wess, Bagger, 260pp  (link), (full text);

Course Number : 110

Level : PhD2

Author(s) : Wess, Bagger

Pre-Requisites :

Course 87 : “Supersymmetry for Mathematicians : An Introduction,” 87, PhD1, Varadarajan, 300pp  (link), (full text);

Post-Requisites :


COURSE 111 :  “The Classification of the Finite Simple Groups : Vol. 5, The Generic Case,” 111, PhD2, Gorenstein, Lyons, Solomon, 460pp  (link);

Course Number : 111

Level : PhD2

Author(s) : Gorenstein, Lyons, Solomon

Pre-Requisites :

Course 109 : “The Classification of the Finite Simple Groups : Vol. 4, Uniqueness Theorems,” 109, PhD2,  Gorenstein, Lyons, Solomon, 330pp (link);

Post-Requisites :

Course 112 : “The Classification of the Finite Simple Groups : Vol. 6, The Special Odd Case,” 111, PhD2,  Gorenstein, Lyons, Solomon, 520pp  (link);


COURSE 112 : “The Classification of the Finite Simple Groups : Vol. 6, The Special Odd Case,” 112, PhD2,  Gorenstein, Lyons, Solomon, 520pp  (link), (free);

Course Number : 112

Level : PhD2

Author(s) : Gorenstein, Lyons, Solomon

Pre-Requisites :

Course 111 : “The Classification of the Finite Simple Groups : Vol. 5, The Generic Case,” 111, PhD2, Gorenstein, Lyons, Solomon, 460pp  (link);

Post-Requisites :


COURSE 113 :  “The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds,” 113, PhD2, Morgan, 130pp  (link), (free), (partial text);

Course Number : 113

Level : PhD2

Author(s) : Morgan

Pre-Requisites :

Course 103 : “The Geometry of Four-Manifolds, 103, PhD2, Donaldson, Kronheimer, 430pp  (link), (free), (free), (free), (free), (free), (free), (free), (free);

Post-Requisites :

Course 114 : “Notes on Seiberg-Witten Theory,” 114, PhD2, Nicolaescu, 470pp  (link), (free), (full text);


COURSE 114 :  “Notes on Seiberg-Witten Theory,” 114, PhD2, Nicolaescu, 470pp  (link), (free), (full text);

Course Number : 114

Level : PhD2

Author(s) : Nicolaescu

Pre-Requisites :

Course 79 : “From Holomorphic Functions to Complex Manifolds,” 79, M2, Fritzsche, Grauert, 370pp  (link), (full text);

Course 113 : “The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds,” 113, PhD2, Morgan, 130pp  (link), (free), (partial text);

Post-Requisites :


COURSE 115 : “Frobenius Algebras and 2D Topological Quantum Field Theories,” 115, PhD2, Kock, 230pp  (link), (free), (free), (full text);

Course Number : 115

Level : PhD2

Author(s) : Kock

Pre-Requisites :

Course 66 : “Algebra : A Graduate Course,” 66, M2, Isaacs, 500pp  (link), (free), (full text tick selected book then download it);

Course 73 : “Categories for the Working Mathematician,” 73, M2, MacLane, 290pp  (link), (full text);

Course 80 : “An Invitation to Morse Theory,” 80, M2, Nicolaescu, 230pp  (link), (full text);

Post-Requisites :


COURSE 116 : “Topological Quantum Field Theory and Four Manifolds,” 115, PhD2, 210pp  Labastida  (link);

Course Number : 116

Level : PhD2

Author(s) : Labastida

Pre-Requisites :

Course 115 : “Frobenius Algebras and 2D Topological Quantum Field Theories,” 115, PhD2, Kock, 230pp  (link), (free), (free), (full text);

Post-Requisites :

Course 117 : “Topological Quantum Computation,” 117, PhD2, Wang, 110pp  (link), (free), (full text);


COURSE 117 : “Topological Quantum Computation,” 117, PhD2, Wang, 110pp  (link), (free), (full text);

Course Number : 117

Level : PhD2

Author(s) : Wang

Pre-Requisites :

Course 17 : “Quantum Mechanics : A Modern and Concise Introductory Course,” 17, M1, Bes, 240pp  (link), (free), (free), (full text);

Post-Requisites :

Course 118 : “Introduction to Topological Quantum Computation,” 118, PhD, Pachos, 200pp  (link), (full text);


COURSE 118 : “Introduction to Topological Quantum Computation,” 118, PhD, Pachos, 200pp  (link), (full text);

Course Number : 118

Level : PhD2

Author(s) : Pachos

Pre-Requisites :

Course 117 : “Topological Quantum Computation,” 117, PhD2, Wang, 110pp  (link), (free), (full text);

Post-Requisites :


COURSE 119 : “Vertex Operator Algebras and the Monster,” 119, PhD2, Frenkel et al, 480pp (link), (free), (free), (free), (free), (free), (free), (free), (free);

Course Number : 119

Level : PhD2

Author(s) : Frenkel et al

Pre-Requisites :

Course 86 : “Infinite Dimensional Lie Algebras,” 86, PhD1, Kac, 350pp  (link), (free), (free), (free), (full text tick selected book then download it);

Post-Requisites :

Course 120 : “Moonshine beyond the Monster : The Bridge Connecting Algebra, Modular Forms and Physics,” 120, PhD2, Gannon, 430pp (link), (free), (free), (free), (free);


COURSE 120 : “Introduction to Topological Quantum Computation,” 118, PhD, Pachos, 200pp  (link), (full text);

Course Number : 120

Level : PhD2

Author(s) : Pachos

Pre-Requisites :

Course 119 : “Vertex Operator Algebras and the Monster,” 119, PhD2, Frenkel et al, 480pp (link), (free), (free), (free), (free), (free), (free), (free), (free);

Post-Requisites :


%d bloggers like this: