profhugodegaris

Species Dominance, Artilects, Artilect War, Cosmists, Terrans, Gigadeath, Essays, Media, etc

deGarisMPC_Courses_List

 

“deGarisMPC” (MathPhysComp) LIST of ~200 Masters, PhD Level YouTube LECTURE COURSES to be VIDEOED over the NEXT 20-30 YEARS

The following is a list of the ~200 “deGarisMPC” (MathPhysComp) Masters and PhD level YouTube Lecture Courses I plan to video over the next 20-30 years. The list begins with a topics list, a summary list of the courses (one line per course), followed by the detailed list of the courses. Each course has its title, course number, academic level (e.g. M2, PhD1, etc), author(s), number of pages in the text, pre-requisite courses, post-requisite courses and a link to the text at amazon.com in red, and if the course has already been videoed and uploaded to YouTube, its video link is in blue.

 


TOPICS LIST OF COURSES


PURE MATH

     ANALYSIS

     FIELD THEORY

     FINITE SIMPLE GROUPS

     GEOMETRY

     GROUP THEORY

     KNOT THEORY

     LIE THEORY

     LOGIC

     MANIFOLDS

     RINGS

     SET THEORY

     TOPOLOGY

MATH(EMATICAL)  PHYSICS

     CLASSICAL PHYSICS

     COSMOLOGY

     INTERPRETATION OF QUANTUM MECHANICS

     MATH METHODS

     PARTICLE PHYSICS

     QUANTUM MECHANICS

     QUANTUM FIELD THEORY

     RELATIVITY

     STATISTICAL MECHANICS

     STRING THEORY

     SUPERSYMMETRY (SUSY)

     TOPOLOGICAL QUANTUM FIELD THEORY (TQFT)

COMPUTER THEORY

     COMPLEXITY THEORY

     THEORY OF COMPUTATION

     TOPOLOGICAL QUANTUM COMPUTING (TQC)

 


SUMMARY LIST OF COURSES


Course 1 : “Mathematical Groups,” 1, Jun-Sen, Barnard, Neill, 220pp  (link);  (videolink);

Course 2  : “Quantum Mechanics,” 2, Sen, Davies, Betts, 170pp  (link);  (videolink);

Course 3 : “Introduction to the Theory of Computation,” 3, Sen-M1, Sipser, 420pp    (link);   (videolink);

Course 4 : “Introduction to Linear Algebra,” 4, Jun-Sen, Lang, 290pp  (link);

Course 5 : “Undergraduate Algebra,” 5, Sen-M1, Lang, 360pp  (link);

Course 6 : “A Course in Group Theory,” 6, Sen-M1, Humphreys, 270pp  (link);

Course 7 : “Vector Calculus,” 7, Jun, Matthews, 180pp  (link);

Course 8 : “Basic Abstract Algebra,” 8, M1, Ash, 400pp  (link);

Course 9 : “Naïve Set Theory,” 9, Jun-Sen, Halmos, 100pp  (link);

Course 10 : “Special Relativity,” 10, Jun-Sen, French, 270pp  (link);

Course 11 : “Gödel’s Proof,” 11, Jun-Sen, Nagel, Newman, 145pp  (link);

Course 12 : “Classical Electrodynamics,” 12, Sen, Greiner, 550pp  (link);

Course 13 : “Representations and Characters of Groups,” 13, M1,  James, Liebeck, 410pp  (link);

Course 14 : “Introduction to High Energy Physics,” 14, Sen-M1, Perkins, 410pp  (link);

Course 15 : “Introduction to Real Analysis,”  15, Jun-Sen, Stoll, 540pp  (link);

Course 16 : “Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

Course 17 : “Differential Forms, A Complement to Vector Calculus,” 17, Sen-M1, Weintraub, 240pp  (link);

Course 18 : “QED : The Strange Theory of Light and Matter,”  18, Jun-Sen, Feynman, 150pp  (link);

Course 19 : “Engines of Logic,” 19, Jun-Sen, Davis, 240pp  (link);

Course 20 : “The Theory of Sets and Transfinite Numbers,” 20, Sen-M1,  Rotman, Kneebone, 130pp  (link);

Course 21  : “Differential Geometry,” 21, Sen-M1, Lipschutz, 270pp  (link);

Course 22 : “Tensor Calculus,” 22, Sen-M1, Kay, 220pp  (link);

Course 23 : “Statistical Mechanics : An Introduction,” 23, Jun-Sen, Trevena, 140pp  (link);

Course 24 : “Basic Topology,” 24, Sen-M1, Armstrong, 240pp  (link);

Course 25 : “Relativity Demystified,” 25, Sen-M1, McMahon, 330pp  (link);

Course 26 : “General Topology,” 26, Sen-M1, Lipschutz, 230pp  (link);

Course 27 : “Statistical Physics,” 27, Sen-M1, Mandl, 370pp  (link);

Course 28 : “Complex Variables and Applications,” 28, Sen-M1, Brown, Churchill, 380pp  (link);

Course 29 : “A Primer of Analytic Number Theory,” 29, Sen-M1, Stopple, 370pp  (link);

Course 30 : “Hyperbolic Geometry,”  30, Sen-M1, Anderson, 220pp  (link);

Course 31 : “Introduction to Field Theory,” 31, Sen-M1, Adamson, 170pp  (link);

Course 32 : “Computation : Finite and Infinite Machines,” 32, Sen-M1, Minsky, 300pp  (link);

Course 33 : “Galois Theory,”  33, Sen-M1, Rotman, 150pp  (link);

Course 34 : “Rings and Ideals, ” 34, Sen-M1, McCoy, 210pp  (link);

Course 35 : “Quantum Field Theory Demystified,”  35, Sen-M1, McMahon, 280pp  (link);

Course 36 : “Matrix Groups : An Introduction to Lie Group Theory,” 36, M1, Baker, 320pp  (link);

Course 37 : “The Physics of Stars,” 37, Sen-M1, Phillips, 200pp  (link);

Course 38 : “Meta Math! The Quest for Omega,” 38, Sen-M1, Chaitin, 200pp  (link);

Course 39 : “What is Mathematical Logic?”  39, Sen-M1, Crossley, 80pp  (link);

Course 40 : “Knots and Links,” 40, Sen-M1, Cromwell, 310pp  (link);

Course 41 : “Introduction to Mathematical Logic,” 41, Sen-M1, Mendelson, 270pp  (link);

Course 42 : “A Short Course in General Relativity,” 42, M1, Foster, Nightingale, 220pp  (link);

Course 43 : “Classical Mechanics,” 43, M1, Goldstein, 370pp  (link);

Course 44 : “Field Quantization,” 44, M1, Greiner, Reinhardt, 430pp  (link);

Course 45 : “Logic for Mathematicians,” 45, M1, Hamilton, 220pp  (link);

Course 46 : “Quantum Mechanics : Symmetries,” 46, M1, Greiner, Muller, 360pp  (link);

Course 47 : “Formal Knot Theory,” 47, M1, Kauffman, 250pp  (link);

Course 48 : “General Topology,” 48, M1, Kelley, 280pp  (link);

Course 49 : “Relativistic Quantum Mechanics : Wave Equations,” 49, M1, Greiner, 340pp  (link);

Course 50 : “Lie Algebras in Particle Physics,” 50, M1, Georgi, 310pp  (link);

Course 51 : “An Introduction to Knot Theory,” 51, M1, Lickorish, 190pp  (link);

Course  52 : “Quantum Electrodynamics”  52, M1, Greiner, Reinhardt, 300pp  (link);

Course 53 : “Topology,” 53, M1, Munkres, 520pp  (link);

Course 54 : “Undergraduate Algebraic Geometry,” 54, M1, Reid, 130pp  (link);

Course 55 : “The Ideas of Particle Physics,” 55, M1, Coughlan, Dodd, 240pp  (link);

Course 56 : “The Lie Algebras su(N) : An Introduction,” 56, M1, Pfeifer, 110pp  (link);

Course 57 : “A First Course in String Theory,” 57, M1, Zwiebach, 550pp  (link);

Course 58 : “Lie Groups : An Introduction through Linear Groups,” 58, M1, Rossman, 260pp  (link);

Course 59 : “Algebraic Topology : A First Course,” 59, M1, Fulton, 420pp  (link);

Course 60 : “Lie Groups, Lie Algebras,” 60, M1, Hausner, Schwartz,  230pp  (link);

Course 61 : “An Introduction to Differentiable Manifolds and Riemannian Geometry,” 61, M1, Boothby, 400pp  (link);

Course 62 : “Semi-Simple Lie Algebras and their Representations,” 62, M1, Cahn, 150pp  (link);

Course 63 : “An Introduction to Algebraic Topology,” 63, M1, Wallace, 200pp  (link);

Course 64 : “Introduction to Lie Groups and Lie Algebras,” 64, M1, Sagle, Walde, 350pp  (link);

Course 65 : “An Introduction to Algebraic Topology,”  65, M1, Rotman, 420pp  (link);

Course 66 : “Computability and Solvability,” 66, M1, Davis, 230pp  (link);

Course 67 : “Differential Topology First Steps,” 67, M1, Wallace, 130pp  (link);

Course 68 : “Introduction to Topological Manifolds,” 68, M1, Lee, 360pp  (link);

Course 69 : “Algebraic Geometry : A First Course,” 69, M1, Harris, 310pp  (link);

Course 70 : “Quantum Field Theory,” 70, M2, Mandl, Shaw, 350pp  (link);

Course 71 : “A Course in the Theory of Groups,” 71, M2, Robinson, 460pp  (link);

Course 72 : “The Meaning of Quantum Theory,” 72, M1-M2, Baggott, 220pp  (link);

Course 73 : “Computability, Complexity, and Languages : Fundamentals of Theoretical Computer Science,” 73, M1-M2, Davis et al, 590pp  (link);

Course 73b  : Conceptual Foundations of Quantum Mechanics,” 73b, M2, d’Espagnat, 350pp  (link);

Course 74 : “Knots and Physics,” 74, M2, Kauffman, 770pp  (link);

Course 75 : “Quantum Computing : A Short Course from Theory to Experiment,” 75, M1, Stolze, Suter, 220pp  (link);

Course 76 : “Modern Differential Geometry for Physicists,” 76, M2, Isham, 280pp  (link);

Course 77 : “Philosophical Consequences of Quantum Theory : Reflections on Bell’s Theorem,” 77, M2, Cushing, 300pp  (link);

Course 78 : “Introduction to Lie Algebras and Representation Theory,”  78, M2, Humphreys, 170pp  (link);

Course 79 : “Introduction to the Theory of Relativity,” 79, M2, Bergmann, Einstein, 300pp  (link);

Course 80 : “Quantum Paradoxes : Quantum Theory for the Perplexed,”  80, M2, Aharonov, 290pp  (link);

Course 81 : “The Theory of Finite Groups : An Introduction,” 81, M2,  Kurzweil, Stellmacher, 370pp  (link);

Course 82 : “Gauge Theory of Weak Interactions,” 82, M2, Greiner, Muller, 300pp  (link);

Course 83 : “Differential Forms and Connections,” 83, M2, Darling, 250pp  (link);

Course 84 : “Quantum Mechanics : Historical Contingency and the Copenhagen Hegemony,” 84, M2, Cushing, 270pp  (link);

Course 85 : “Introduction to Smooth Manifolds,” 85, M2, Lee, 600pp  (link);

Course 86 : “The Einstein, Podolsky, and Rosen Paradox in Atomic, Nuclear and Particle Physics,” 86, M2, Afriat, 240pp  (link);

Course 87 : “Quantum Chromodynamics,” 87, M2, Greiner et al, 550pp  (link);

Course 88 : “Algebra : A Graduate Course,” 88, M2, Isaacs, 500pp  (link);

Course 89 : “Quantum Paradoxes and Physical Reality,” 89, M2, Selleri, 360pp  (link);

Course 90 : “Foundations of Differentiable Manifolds and Lie Groups,” 90, M2, Warner, 260pp  (link);

Course 91 : “Particle Physics : A Comprehensive Introduction,” 91, M2, Seiden, 450pp  (link);

Course 92 : “Character Theory of Finite Groups,” 92, M2, Isaacs, 290pp  (link);

Course 93 : “Complexity Theory,” 93, M2, Wegener, 290pp  (link);

Course 94 : “Lie Groups, Lie Algebras, and their Representations,” 94, M2, Varadarajan, 420pp  (link);

Course 95 : “An Introduction to the Standard Model of Particle Physics,” 95, M2, Cottingham, Greenwood, 230pp  (link);

Course 96 : “Testing Quantum Mechanics on New Ground,” 96, M2, Ghose, 180pp   (link);

Course 97 : “Spinors in Physics,” 97, M2, Hladik, 220pp  (link);

Course 98 : “Understanding Quantum Mechanics,” 98, M2, Omnes, 300pp  (link);

Course 99 : “Representation Theory : A First Course,” 99, M2, Fulton, Harris, 540pp  (link);

Course 100 : “Lorentzian Wormholes : From Einstein to Hawking,” 100, M2, Visser, 370pp  (link);

Course 101 : “Beyond Measure : Modern Physics, Philosophy and the Meaning of Quantum Theory,” 101, M2, Baggott, 360pp  (link);

Course 102 : “Symmetries, Lie Algebras and Representations : A Graduate Course for Physicists,” 102, M2, Fuchs, Schweigert, 420pp  (link);

Course 103 : “The Quantum Challenge : Modern Research on the Foundations of Quantum Mechanics,” 103, M2, Greenstein, 210pp  (link);

Course 104 : “An Invitation to Algebraic Geometry,”  104, M2, Smith et al, 150pp  (link);

Course 105 : “Commutative Algebra, Vol. 1,” 105, M2, Zariski, Samuel, 320pp  (link);

Course 106 : “Introduction to Gauge Field Theory,” 106, M2, Bailin, Love, 360pp  (link);

Course 107 : “Algebraic Geometry,” 107, M2, Hartshorne, 460pp  (link);

Course 108 : “Wave-Particle Duality,” 108, M2, Selleri, 300pp  (link);

Course 109 : “Categories for the Working Mathematician,” 109, M2, MacLane, 290pp  (link);

Course 110 : “Gauge Theories in Particle Physics,” 110, M2, Aitchison, Hey, 550pp  (link);

Course 111 : “Commutative Algebra, Vol. 2,” 111, M2, Zariski, Samuel, 410pp  (link);

Course 112 : “Nonlocality in Quantum Physics,” 112, M2, Grib, 220pp  (link);

Course 113 : “Gauge Theory of Elementary Particle Physics,” 113, M2, Cheng, Li, 510pp  (link);

Course 114 : “Riemann Surfaces,” 114, M2, Farkas, Kra, 350pp  (link);

Course 115 : “Speakable and Unspeakable in Quantum Mechanics,” 115, M2, Bell, 210pp  (link);

Course 116 : “Algebraic Topology : Homology & Cohomology,” 116, M2, Wallace, 270pp  (link);

Course 117 : “Introduction to Cyclotomic Fields,” 117, M2, Washington, 420pp  (link);

Course 118 : “Topics in Contemporary Mathematical Physics,” 118, M2, Lam, 580pp  (link);

Course 119 : “Quantum Measurement of a Single System,” 119, M2, Alter, 120pp  (link);

Course 120 : “Introduction to Riemann Surfaces,” 120, M2, Springer, 300pp   (link);

Course 121 : “Geometry, Topology and Physics,” 121, M2, Nakahara, 490pp  (link);

Course 122 : “From Holomorphic Functions to Complex Manifolds,” 122, M2, Fritzsche, Grauert, 370pp  (link);

Course 123 : “A First Course in Noncommutative Rings,” 123, M2, Lam, 380pp  (link);

Course 124 : “An Invitation to Morse Theory,” 124, M2, Nicolaescu, 230pp  (link);

Course 125 : “Noncommutative Rings,” 125, M2, Herstein, 190pp  (link);

Course 126 : “Journeys Beyond the Standard Model,” 126, PhD1, Ramond, 360pp  (link);

Course 127 : “Finite Group Theory,” 127, PhD1, Aschbacher, 270pp  (link);

Course 128 : “Supersymmetry Demystified,” 128, M2, Labelle, 410pp  (link);

Course 129 : “Measure Theory ,” 129, M2, Doob, 200pp  (link);

Course 130 : “Nuclear Models,” 130, M2, Greiner, Maruhn, 360pp  (link);

Course 131 : “Simple Groups of Lie Type,” 131, M2, Carter, 310pp  (link);

Course 132 : “Supersymmetry in Particle Physics,” 132, PhD1, Aitchison, 210pp  (link);

Course 133 : “Infinite Dimensional Lie Algebras,” 133, PhD1, Kac, 350pp  (link);

Course 134 : “Supersymmetry for Mathematicians : An Introduction,” 134, PhD1, Varadarajan, 300pp  (link);

Course 135 : “Finite Groups,” 135, PhD1, Gorenstein, 500pp  (link);

Course 136 : “Introduction to Supersymmetry,” 136, PhD1, Freund, 140pp  (link);

Course 137 : “Sporadic Groups,” 137, PhD1, Aschbacher, 300pp  (link);

Course 138 : “Five Lectures on Supersymmetry,” 138, PhD1, Freed, 110pp  (link);

Course 139 : “Group Theory : Birdtracks, Lie’s, and Exceptional Groups,” 139, PhD1, Cvitanovic, 250pp  (link);

Course 140 : “String Theory Demystified,” 140, M2-PhD1, McMahon, 290pp  (link);

Course 141 : “Supersymmetry and String Theory : Beyond the Standard Model,” 141, PhD1, Dine, 500pp  (link);

Course 142 : “Quantum Groups,” 142, PhD1, Kassel, 500pp  (link);

Course 143 : “Supersymmetric Gauge Field Theory and String Theory,” 143, PhD1, Bailin, Love, 320pp  (link);

Course 144 : “A Taste of Jordan Algebras,” 144, PhD1, McCrimmon, 540pp  (link);

Course 145 : “Conformal Field Theory,” 145, PhD1, di Francesco et al, 860pp  (link);

Course 146 : “An Introduction to Nonassociative Algebras,” 146, PhD1, Schafer, 150pp  (link);

Course 147 : “String Theory : Vol. 1, An Introduction to the Bosonic String,” 147, PhD1, Polchinski, 360pp  (link);

Course 148 : “Computability,” 148, PhD1, Tourlakis, 550pp  (link);

Course 149 : “On Formally Undecidable Propositions of Principia Mathematica and Related Systems,” 149, PhD1, Godel, 70pp  (link);

Course 150 : “String Theory : Vol. 2, Superstring Theory and Beyond,” 150, PhD1, Polchinski, 510pp  (link);

Course 151 : “Introduction to Homological Algebra,” 151, PhD1, Weibel, 430pp  (link);

Course 152 : “Introduction to Superstrings and M-Theory,” 152, PhD1, Kaku, , 580pp  (link);

Course 153 : “Knots, Links, Braids and 3-Manifolds : An Introduction to the New Invariants in Low-Dimensional Topology,” 153, PhD1, Prasolov, Sossinsky, 230pp  (link);

Course 154 : “Renormalization : An Introduction,” 154, PhD1, Salmhofer, 220pp  (link);

Course 155 : “Topology of 4-Manifolds,” 155, PhD1, Freedman, Quinn, 250pp  (link);

Course 156 : “Quantum Gauge Theories : A True Ghost Story,” 156, PhD1, Scharf, 240pp  (link);

Course 157 : “Calabi-Yau Manifolds and Related Geometries,” 157, PhD1, Gross et al, 230pp  (link);

Course 158 : “Gauge Field Theories,” 158, PhD1, Frampton, 330pp  (link);

Course 159 : “Finite Simple Groups : An Introduction to their Classification,” 159, PhD1, Gorenstein, 310pp  (link);

Course 160 : “Quarks, Leptons & Gauge Fields,” 160, PhD1, Huang, 330pp  (link);

Course 161 : “The Classification of Finite Simple Groups, Vol. 1 : Groups of Noncharacteristic 2 Type,” 161, PhD1, Gorenstein, 470pp  (link);

Course 162 : “Fields, Symmetries, and Quarks,” 162, PhD1, Mosel, 300pp  (link);

Course 163 : “The Classification of Finite Simple Groups : Vol. 2, Groups of Characteristic 2 Type,” 163, PhD2, Aschbacher et al, 310pp  (link);

Course 164 : “The Geometry of Four-Manifolds, 164, PhD2, Donaldson, Kronheimer, 430pp  (link);

Course 165 : “The Theory of Quark and Gluon Interactions,” 165, PhD1, Yndurain, 390pp  (link);

Course 166 : “The Local Structure of Finite Groups of Characteristic 2 Type,” 166, PhD2, Gorenstein, Lyons, 720pp  (link);

Course 167 : “Unification and Supersymmetry : The Frontiers of Quark-Lepton Physics,” 167, PhD1, Mohapatra, 410pp  (link);

Course 168 : “The Classification of the Finite Simple Groups : Vol. 1, Overview, Outline of Proof,” 168, PhD2, Gorenstein, Lyons, Solomon, 140pp  (link);

Course 169 : “Black Hole Physics : Basic Concepts and New Developments,” 169, PhD1, Frolov, Novikov, 710pp  (link);

Course 170 : “The Classification of the Finite Simple Groups : Vol. 2, General Group Theory,” 170, PhD2, Gorenstein, Lyons, Solomon, 200pp (link);

Course 171 : “Cosmology,” 171, PhD1, Weinberg, 570pp  (link);

Course 172 : “The Classification of the Finite Simple Groups : Vol. 3, Almost Simple K-Groups,” 172, PhD2, Gorenstein, Lyons, Solomon, 400pp  (link);

Course 173 : “Differential Topology and Quantum Field Theory,” 173, PhD2, Nash, 360pp  (link);

Course 174 : “The Classification of the Finite Simple Groups : Vol. 4, Uniqueness Theorems,” 174, PhD2,  Gorenstein, Lyons, Solomon, 330pp (link);

Course 175 : “Supersymmetry and Supergravity,” 175, PhD2, Wess, Bagger, 260pp  (link);

Course 176 : “The Classification of the Finite Simple Groups : Vol. 5, The Generic Case,” 176, PhD2, Gorenstein, Lyons, Solomon, 460pp  (link);

Course 177 : “Strings, Conformal Fields, and M-Theory,” 177, PhD2, Kaku, 520pp  (link);

Course 178 : “The Classification of the Finite Simple Groups : Vol. 6, The Special Odd Case,” 178, PhD2,  Gorenstein, Lyons, Solomon, 520pp  (link);

Course 179 : “D-Branes,” 179, PhD2, Johnson, 510pp  (link);

Course 180 : “Twelve Sporadic Groups,” 180, PhD2, Griess, 150pp  (link);

Course 181 : “Gravity and Strings,” 181, PhD2, Ortin, 650pp  (link);

Course 182 : “Quantum Gravity,” 182, PhD2, Rovelli, 420pp  (link);

Course 183 : “Theory of Finite Simple Groups,” 183, PhD2, Michler, 640pp  (link);

Course 184 : “String Theory and M-Theory : A Modern Introduction,” 184, PhD2, Becker, 690pp  (link);

Course 185 : “Theory of Finite Simple Groups II, Commentary on the Classification Problems,” 185, PhD2, Michler, 720pp  (link);

Course 186 : “The Finite Simple Groups,” 186, PhD2, Wilson, 280pp  (link);

Course 187 : “Vertex Operator Algebras and the Monster,” 187, PhD2, Frenkel et al, 480pp  (link);

Course 188 : “Moonshine Beyond the Monster : The Bridge Connecting Algebra, Modular Forms and Physics, 188, PhD2, Gannon, 430pp  (link);

Course 189 : “The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds,” 189, PhD2, Morgan, 130pp  (link);

Course 190 : “Geometry of Sporadic Groups,” 190, PhD2, Ivanov, 400pp  (link);

Course 191 : “Notes on Seiberg-Witten Theory,” 191, PhD2, Nicolaescu, 470pp  (link);

Course 192 : “Monopoles and Three-Manifolds,” 192, PhD2,  Kronheimer, Mrowka, 780pp  (link);

Course 193 : “Frobenius Algebras and 2D Topological Quantum Field Theories,” 193, PhD2, Kock, 230pp  (link);

Course 194 : “Topological Quantum Field Theory and Four Manifolds,” 194, PhD2, 210pp  Labastida  (link);

Course 195 : “Topological Quantum Computation,” 195, PhD2, Wang, 110pp  (link);

Course 196 : “Introduction to Topological Quantum Computation,” 196, PhD, Pachos, 200pp  (link);

 


DETAILED LIST of COURSES and DEPENDENCIES


 

COURSE : “Mathematical Groups,” 1, Jun-Sen, Barnard, Neill, 220pp  (link);  (videolink);

Course Number : 1

Level : Jun, Sen

Author(s) : Barnard, Neill

Pre-Requisites : none

Post-Requisites : “A Course in Group Theory,” 6, Sen-M1, Humphreys, 270pp  (link);


COURSE : “Quantum Mechanics,” 2, Sen, Davies, Betts, 170pp  (link);  (videolink);

Course Number : 2

Level : Sen

Author(s) : Davies, Betts

Pre-Requisites : none

Post-Requisites : “Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);


COURSE : “Introduction to the Theory of Computation,” 3, Sen-M1, Sipser, 420pp  (link);  (videolink);

Course Number : 3

Level : Sen, M1

Author(s) : Sipser

Pre-Requisites : none

Post-Requisites : “Computation : Finite and Infinite Machines,” 32, Sen-M1, Minsky, 300pp  (link);

“Computability and Solvability,” 66, M1, Davis, 230pp  (link);

“Quantum Computing : A Short Course from Theory to Experiment,” 75, M1, Stolze, Suter, 220pp  (link);


COURSE : “Introduction to Linear Algebra,” 4, Jun-Sen, Lang, 290pp  (link);

Course Number : 4

Level : Jun-Sen

Author(s) : Lang

Pre-Requisites : none

Post-Requisites : “Undergraduate Algebra,” 5, Sen-M1, Lang, 360pp  (link);


COURSE : “Undergraduate Algebra,” 5, Sen-M1, Lang, 360pp  (link);

Course Number : 5

Level : Sen-M1

Author(s) : Lang

Pre-Requisites : “Introduction to Linear Algebra,” 4, Jun-Sen, Lang, 290pp  (link);

Post-Requisites :  “Basic Abstract Algebra,” 8, M1, Ash, 400pp  (link);


COURSE : “A Course in Group Theory,” 6, Sen-M1, Humphreys, 270pp  (link);

Course Number : 6

Level : Sen-M1

Author(s) : Humphreys

Pre-Requisites : “Mathematical Groups,” 1, Jun-Sen, Barnard, Neill, 220pp  (link);  (videolink);

Post-Requisites :  “Representations and Characters of Groups,” 13, M1,  James, Liebeck, 410pp  (link);

“A Course in the Theory of Groups,” 71, M2, Robinson, 460pp  (link);


COURSE : “Vector Calculus,” 7, Jun, Matthews, 180pp  (link);

Course Number : 7

Level : Jun

Author(s) : Matthews

Pre-Requisites : none

Post-Requisites : “Special Relativity,” 10, Jun-Sen, French, 270pp  (link);

“Classical Electrodynamics,” 12, Sen, Greiner, 550pp  (link);


COURSE : “Basic Abstract Algebra,” 8, M1, Ash, 400pp  (link);

Course Number : 8

Level : M1

Author(s) : Ash

Pre-Requisites : “Undergraduate Algebra,” 5, Sen-M1, Lang, 360pp  (link);

Post-Requisites : “Algebra : A Graduate Course,”  88, M2, Isaacs, 500pp  (link);


COURSE : “Naïve Set Theory,” 9, Jun-Sen, Halmos, 100pp  (link);

Course Number : 9

Level : Jun-Sen

Author(s) : Halmos

Pre-Requisites : none

Post-Requisites : “The Theory of Sets and Transfinite Numbers,” 20, Sen-M1,  Rotman, Kneebone, 130pp  (link);


COURSE : “Special Relativity,” 10, Jun-Sen, French, 270pp  (link);

Course Number : 10

Level : Jun-Sen

Author(s) : French

Pre-Requisites : “Vector Calculus,” 7, Jun, Matthews, 180pp  (link);

Post-Requisites : “A Short Course in General Relativity,” 42, M1, Foster, Nightingale, 220pp  (link);

“Relativistic Quantum Mechanics : Wave Equations,” 49, M1, Greiner, 340pp  (link);


COURSE : “Gödel’s Proof,” 11, Jun-Sen, Nagel, Newman, 145pp  (link);

Course Number : 11

Level : Jun-Sen

Author(s) : Nagel, Newman

Pre-Requisites : none

Post-Requisites : “On Formally Undecidable Propositions of Principia Mathematica and Related Systems,” 149, PhD1, Godel, 70pp  (link);


COURSE : “Classical Electrodynamics,” 12, Sen, Greiner, 550pp  (link);

Course Number : 12

Level : Sen

Author(s) : Greiner

Pre-Requisites : “Vector Calculus,” 7, Jun, Matthews, 180pp  (link);

Post-Requisites : “Quantum Electrodynamics”  52, M1, Greiner, Reinhardt, 300pp  (link);


COURSE : “Representations and Characters of Groups,” 13, M1,  James, Liebeck, 410pp  (link);

Course Number : 13

Level : M1

Author(s) : James, Liebeck

Pre-Requisites : “A Course in Group Theory,” 6, Sen-M1, Humphreys, 270pp  (link);

Post-Requisites : “Character Theory of Finite Groups,” 92, M2, Isaacs, 290pp  (link);

“Finite Group Theory,” 127, PhD1, Aschbacher, 270pp  (link);

“Finite Groups,” 135, PhD1, Gorenstein, 500pp  (link);


COURSE : “Introduction to High Energy Physics,” 14, Sen-M1, Perkins, 410pp  (link);

Course Number : 14

Level : Sen-M1

Author(s) : Perkins

Pre-Requisites : “Special Relativity,” 10, Jun-Sen, French, 270pp  (link);

Post-Requisites : “The Ideas of Particle Physics,” 55, M1, Coughlan, Dodd, 240pp  (link);


COURSE : “Introduction to Real Analysis,”  15, Jun-Sen, Stoll, 540pp  (link);

Course Number : 15

Level : Jun-Sen

Author(s) : Stoll

Pre-Requisites : none

Post-Requisites : “Complex Variables and Applications,” 28, Sen-M1, Brown, Churchill, 380pp  (link);


COURSE : “Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

Course Number : 16

Level : Sen-M1

Author(s) : Mandl

Pre-Requisites : “Quantum Mechanics,” 2, Sen, Davies, Betts, 170pp  (link);  (videolink);

Post-Requisites : “Relativistic Quantum Mechanics : Wave Equations,” 49, M1, Greiner, 340pp  (link);


COURSE : “Differential Forms, A Complement to Vector Calculus,” 17, Sen-M1, Weintraub, 240pp  (link);

Course Number : 17

Level : Sen-M1

Author(s) : Weintraub

Pre-Requisites : “Vector Calculus,” 7, Jun, Matthews, 180pp  (link);

Post-Requisites : –


COURSE : “QED : The Strange Theory of Light and Matter,”  18, Jun-Sen, Feynman, 150pp  (link);

Course Number : 18

Level : Jun-Sen

Author(s) : Feynman

Pre-Requisites : none

Post-Requisites : “Quantum Electrodynamics”  52, M1, Greiner, Reinhardt, 300pp  (link);


COURSE : “Engines of Logic,” 19, Jun-Sen, Davis, 240pp  (link);

Course Number : 19

Level : Jun-Sen

Author(s) : Davis

Pre-Requisites : none

Post-Requisites : none


COURSE : “The Theory of Sets and Transfinite Numbers,” 20, Sen-M1,  Rotman, Kneebone, 130pp  (link);

Course Number : 20

Level : Sen-M1

Author(s) : Rotman, Kneebone

Pre-Requisites : “Naïve Set Theory,” 9, Jun-Sen, Halmos, 100pp  (link);

Post-Requisites : none


COURSE : “Differential Geometry,” 21, Sen-M1, Lipschutz, 270pp  (link);

Course Number : 21

Level : Sen-M1

Author(s) : Lipschutz

Pre-Requisites : “Vector Calculus,” 7, Jun, Matthews, 180pp  (link);

Post-Requisites :  “General Topology,” 26, Sen-M1, Lipschutz, 230pp  (link);


COURSE : “Tensor Calculus,” 22, Sen-M1, Kay, 220pp  (link);

Course Number : 22

Level : Sen-M1

Author(s) : Kay

Pre-Requisites : “Introduction to Linear Algebra,” 4, Jun-Sen, Lang, 290pp  (link);

“Special Relativity,” 10, Jun-Sen, French, 270pp  (link);

“Differential Geometry,” 21, Sen-M1, Lipschutz, 270pp  (link);

“General Topology,” 26, Sen-M1, Lipschutz, 230pp  (link);

Post-Requisites : “A Short Course in General Relativity,” 42, M1, Foster, Nightingale, 220pp  (link);


COURSE : “Statistical Mechanics : An Introduction,” 23, Jun-Sen, Trevena, 140pp  (link);

Course Number : 23

Level : Jun-Sen

Author(s) : Trevena

Pre-Requisites : none

Post-Requisites : “Statistical Physics,” 27, Sen-M1, Mandl, 370pp  (link);


COURSE : “Basic Topology,” 24, Sen-M1, Armstrong, 240pp  (link);

Course Number : 24

Level : Sen-M1

Author(s) : Armstrong

Pre-Requisites : “Undergraduate Algebra,” 5, Sen-M1, Lang, 360pp  (link);

Post-Requisites : “General Topology,” 26, Sen-M1, Lipschutz, 230pp  (link);


COURSE : “Relativity Demystified,” 25, Sen-M1, McMahon, 330pp  (link);

Course Number : 25

Level : Sen-M1

Author(s) : McMahon

Pre-Requisites : “Vector Calculus,” 7, Jun, Matthews, 180pp  (link);

“Special Relativity,” 10, Jun-Sen, French, 270pp  (link);

“Differential Geometry,” 21, Sen-M1, Lipschutz, 270pp  (link);

“Tensor Calculus,” 22, Sen-M1, Kay, 220pp  (link);

Post-Requisites : “A Short Course in General Relativity,” 42, M1, Foster, Nightingale, 220pp  (link);


COURSE : “General Topology,” 26, Sen-M1, Lipschutz, 230pp  (link);

Course Number : 26

Level : Sen-M1

Author(s) : Lipschutz

Pre-Requisites : “Introduction to Linear Algebra,” 4, Jun-Sen, Lang, 290pp  (link);

“Undergraduate Algebra,” 5, Sen-M1, Lang, 360pp  (link);

“Basic Topology,” 24, Sen-M1, Armstrong, 240pp  (link);

Post-Requisites : “Topology,” 53, M1, Munkres, 520pp  (link);


COURSE : “Statistical Physics,” 27, Sen-M1, Mandl, 370pp  (link);

Course Number : 27

Level : Sen-M1

Author(s) : Mandl

Pre-Requisites : “Statistical Mechanics : An Introduction,” 23, Jun-Sen, Trevena, 140pp  (link);

Post-Requisites : “Conformal Field Theory,” 145, PhD1, di Franceso et al, 860pp  (link);


COURSE : “Complex Variables and Applications,” 28, Sen-M1, Brown, Churchill, 380pp  (link);

Course Number : 28

Level : Sen-M1

Author(s) : Brown, Churchill

Pre-Requisites : “Introduction to Real Analysis,”  15, Jun-Sen, Stoll, 540pp  (link);

Post-Requisites : “Quantum Electrodynamics”  52, M1, Greiner, Reinhardt, 300pp  (link);

“Riemann Surfaces,” 114, M2, Farkas, Kra, 350pp  (link);


COURSE : “A Primer of Analytic Number Theory,” 29, Sen-M1, Stopple, 370pp  (link);

Course Number : 29

Level : Sen-M1

Author(s) : Stopple

Pre-Requisites : “Introduction to Real Analysis,”  15, Jun-Sen, Stoll, 540pp  (link);

“Complex Variables and Applications,” 28, Sen-M1, Brown, Churchill, 380pp  (link);

Post-Requisites : none


COURSE : “Hyperbolic Geometry,”  30, Sen-M1, Anderson, 220pp  (link);

Course Number : 30

Level : Sen-M1

Author(s) : Anderson

Pre-Requisites : “Mathematical Groups,” 1, Jun-Sen, Barnard, Neill, 220pp  (link);  (videolink);

“Complex Variables and Applications,” 28, Sen-M1, Brown, Churchill, 380pp  (link);

Post-Requisites : none


COURSE : “Introduction to Field Theory,” 31, Sen-M1, Adamson, 170pp  (link);

Course Number : 31

Level : Sen-M1

Author(s) : Adamson

Pre-Requisites : “Undergraduate Algebra,” 5, Sen-M1, Lang, 360pp  (link);

Post-Requisites : “Galois Theory,”  33, Sen-M1, Rotman, 150pp  (link);


COURSE : “Computation: Finite and Infinite Machines,” 32, Sen-M1, Minsky, 300pp  (link);

Course Number : 32

Level : Sen-M1

Author(s) : Minsky

Pre-Requisites : “Introduction to the Theory of Computation,” 3, Sen-M1, Sipser, 420pp    (link);   (videolink);

Post-Requisites : “Computability, Complexity, and Languages : Fundamentals of Theoretical Computer Science,” 73, M1-M2, Davis et al, 590pp  (link);


COURSE : “Galois Theory,”  33, Sen-M1, Rotman, 150pp  (link);

Course Number : 33

Level : Sen-M1

Author(s) : Rotman

Pre-Requisites : “A Course in Group Theory,” 6, Sen-M1, Humphreys, 270pp  (link);

“Introduction to Field Theory,” 31, Sen-M1, Adamson, 170pp  (link);

Post-Requisites : “Finite Simple Groups : An Introduction to their Classification,” 159, PhD1, Gorenstein, 310pp  (link);


COURSE : “Rings and Ideals, ” 34, Sen-M1, McCoy, 210pp  (link);

Course Number : 34

Level : Sen-M1

Author(s) : McCoy

Pre-Requisites : “Undergraduate Algebra,” 5, Sen-M1, Lang, 360pp  (link);

Post-Requisites : none


COURSE : “Quantum Field Theory Demystified,”  35, Sen-M1, McMahon, 280pp  (link);

Course Number : 35

Level : Sen-M1

Author(s) : McMahon

Pre-Requisites : “QED : The Strange Theory of Light and Matter,”  18, Jun-Sen, Feynman, 150pp  (link);

Post-Requisites : “Quantum Electrodynamics”  52, M1, Greiner, Reinhardt, 300pp  (link);


COURSE : “Matrix Groups : An Introduction to Lie Group Theory,” 36, M1, Baker, 320pp  (link);

Course Number : 36

Level : M1

Author(s) : Baker

Pre-Requisites : “Mathematical Groups,” 1, Jun-Sen, Barnard, Neill, 220pp  (link);  (videolink);

“Introduction to Linear Algebra,” 4, Jun-Sen, Lang, 290pp  (link);

“Undergraduate Algebra,” 5, Sen-M1, Lang, 360pp  (link);

Post-Requisites : “The Lie Algebras su(N) : An Introduction,” 56, M1, Pfeifer, 110pp  (link);


COURSE : “The Physics of Stars,” 37, Sen-M1, Phillips, 200pp  (link);

Course Number : 37

Level : Sen-M1

Author(s) : Phillips

Pre-Requisites : none

Post-Requisites : “Cosmology,” 171, PhD1, Weinberg, 570pp  (link);


COURSE : “Meta Math! The Quest for Omega,” 38, Sen-M1, Chaitin, 200pp  (link);

Course Number : 38

Level : Sen-M1

Author(s) : Chaitin

Pre-Requisites : none

Post-Requisites : none


COURSE : “What is Mathematical Logic?”  39, Sen-M1, Crossley, 80pp  (link);

Course Number : 39

Level : Sen-M1

Author(s) : Crossley

Pre-Requisites : none

Post-Requisites : “Introduction to Mathematical Logic,” 41, Sen-M1, Mendelson, 270pp  (link);


COURSE : “Knots and Links,” 40, Sen-M1, Cromwell, 310pp  (link);

Course Number : 40

Level : Sen-M1

Author(s) : Cromwell

Pre-Requisites : none

Post-Requisites : “Formal Knot Theory,” 47, M1, Kauffman, 250pp  (link);

“An Introduction to Knot Theory,” 51, M1, Lickorish, 190pp  (link);


COURSE : “Introduction to Mathematical Logic,” 41, Sen-M1, Mendelson, 270pp  (link);

Course Number : 41

Level : Sen-M1

Author(s) : Mendelson

Pre-Requisites : “What is Mathematical Logic?”  39, Sen-M1, Crossley, 80pp  (link);

Post-Requisites : “Logic for Mathematicians,” 45, M1, Hamilton, 220pp  (link);


COURSE : “A Short Course in General Relativity,” 42, M1, Foster, Nightingale, 220pp  (link);

Course Number : 42

Level : M1

Author(s) : Foster, Nightingale

Pre-Requisites : “Vector Calculus,” 7, Jun, Matthews, 180pp  (link);

“Special Relativity,” 10, Jun-Sen, French, 270pp  (link);

“Differential Geometry,” 21, Sen-M1, Lipschutz, 270pp  (link);

“Tensor Calculus,” 22, Sen-M1, Kay, 220pp  (link);

Post-Requisites : “Introduction to the Theory of Relativity,” 79, M2, Bergmann, Einstein, 300pp  (link);


COURSE : “Classical Mechanics,” 43, M1, Goldstein, 370pp  (link);

Course Number : 43

Level : M1

Author(s) : Goldstein

Pre-Requisites : “Special Relativity,” 10, Jun-Sen, French, 270pp  (link);

Post-Requisites : “Field Quantization,” 44, M1, Greiner, Reinhardt, 430pp  (link);


COURSE : “Field Quantization,” 44, M1, Greiner, Reinhardt, 430pp  (link);

Course Number : 44

Level : M1

Author(s) : Greiner, Reinhardt

Pre-Requisites : “Special Relativity,” 10, Jun-Sen, French, 270pp  (link);

“Classical Electrodynamics,” 12, Sen, Greiner, 550pp  (link);

“QED : The Strange Theory of Light and Matter,”  18, Jun-Sen, Feynman, 150pp  (link);

“Statistical Mechanics : An Introduction,” 23, Jun-Sen, Trevena, 140pp  (link);

“Classical Mechanics,” 43, M1, Goldstein, 370pp  (link);

Post-Requisites : “Relativistic Quantum Mechanics : Wave Equations,” 49, M1, Greiner, 340pp  (link);


COURSE : “Logic for Mathematicians,” 45, M1, Hamilton, 220pp  (link);

Course Number : 45

Level : M1

Author(s) : Hamilton

Pre-Requisites : “Introduction to Mathematical Logic,” 41, Sen-M1, Mendelson, 270pp  (link);

Post-Requisites : “On Formally Undecidable Propositions of Principia Mathematica and Related Systems,” 149, PhD1, Godel, 70pp  (link);


COURSE : “Quantum Mechanics : Symmetries,” 46, M1, Greiner, Muller, 360pp  (link);

Course Number : 46

Level : M1

Author(s) : Greiner, Muller

Pre-Requisites : “Representations and Characters of Groups,” 13, M1,  James, Liebeck, 410pp  (link);

“Introduction to High Energy Physics,” 14, Sen-M1, Perkins, 410pp  (link);

“Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

“Matrix Groups : An Introduction to Lie Group Theory,” 36, M1, Baker, 320pp  (link);

Post-Requisites : “Lie Algebras in Particle Physics,” 50, M1, Georgi, 310pp  (link);


COURSE : “Formal Knot Theory,” 47, M1, Kauffman, 250pp  (link);

Course Number : 47

Level : M1

Author(s) : Kauffman

Pre-Requisites : “Knots and Links,” 40, Sen-M1, Cromwell, 310pp  (link);

Post-Requisites : “An Introduction to Knot Theory,” 51, M1, Lickorish, 190pp  (link);


COURSE : “General Topology,” 48, M1, Kelley, 280pp  (link);

Course Number : 48

Level : M1

Author(s) : Kelley

Pre-Requisites : “General Topology,” 26, Sen-M1, Lipschutz, 230pp  (link);

Post-Requisites : “Topology,” 53, M1, Munkres, 520pp  (link);


COURSE : “Relativistic Quantum Mechanics : Wave Equations,” 49, M1, Greiner, 340pp  (link);

Course Number : 49

Level : M1

Author(s) : Greiner

Pre-Requisites : “Field Quantization,” 44, M1, Greiner, Reinhardt, 430pp  (link);

Post-Requisites : “Quantum Electrodynamics”  52, M1, Greiner, Reinhardt, 300pp  (link);


COURSE : “Lie Algebras in Particle Physics,”  50, M1, Georgi, 310pp  (link);

Course Number : 50

Level : M1

Author(s) : Georgi

Pre-Requisites : “Quantum Mechanics : Symmetries,” 46, M1, Greiner, Muller, 360pp  (link);

Post-Requisites : “The Ideas of Particle Physics,” 55, M1, Coughlan, Dodd, 240pp  (link);


COURSE : “An Introduction to Knot Theory,” 51, M1, Lickorish, 190pp  (link);

Course Number : 51

Level : M1

Author(s) : Lickorish

Pre-Requisites : “Formal Knot Theory,” 47, M1, Kauffman, 250pp  (link);

Post-Requisites : “Knots and Physics,” 74, M2, Kauffman, 770pp  (link);


COURSE : “Quantum Electrodynamics”  52, M1, Greiner, Reinhardt, 300pp  (link);

Course Number : 52

Level : M1

Author(s) : Greiner, Reinhardt

Pre-Requisites : “Relativistic Quantum Mechanics : Wave Equations,” 49, M1, Greiner, 340pp  (link);

Post-Requisites : “Gauge Theory of Weak Interactions,” 82, M2, Greiner, Muller, 300pp  (link);


COURSE : “Topology,” 53, M1, Munkres, 520pp  (link);

Course Number : 53

Level : M1

Author(s) : Munkres

Pre-Requisites : “General Topology,” 26, Sen-M1, Lipschutz, 230pp  (link);

Post-Requisites : “Algebraic Topology : A First Course,” 59, M1, Fulton, 420pp  (link);


COURSE : “Undergraduate Algebraic Geometry,” 54, M1, Reid, 130pp  (link);

Course Number : 54

Level : M1

Author(s) : Reid

Pre-Requisites : “Undergraduate Algebra,” 5, Sen-M1, Lang, 360pp  (link);

“General Topology,” 26, Sen-M1, Lipschutz, 230pp  (link);

Post-Requisites : “Algebraic Geometry : A First Course,” 69, M1, Harris, 310pp  (link);


COURSE : “The Ideas of Particle Physics,” 55, M1, Coughlan, Dodd, 240pp  (link);

Course Number : 55

Level : M1

Author(s) : Coughlan, Dodd

Pre-Requisites : “Introduction to High Energy Physics,” 14, Sen-M1, Perkins, 410pp  (link);

Post-Requisites : “Particle Physics : A Comprehensive Introduction,” 91, M2, Seiden, 450pp  (link);


COURSE : “The Lie Algebras su(N) : An Introduction,” 56, M1, Pfeifer, 110pp  (link);

Course Number : 56

Level : M1

Author(s) : Pfeifer

Pre-Requisites : “Matrix Groups : An Introduction to Lie Group Theory,” 36, M1, Baker, 320pp  (link);

Post-Requisites : “Semi-Simple Lie Algebras and their Representations,” 62, M1, Cahn, 150pp  (link);


COURSE : “A First Course in String Theory,” 57, M1, Zwiebach, 550pp  (link);

Course Number : 57

Level : M1

Author(s) : Zwiebach

Pre-Requisites : “Quantum Mechanics,” 2, Sen, Davies, Betts, 170pp  (link);  (videolink);

“Special Relativity,” 10, Jun-Sen, French, 270pp  (link);

“Classical Electrodynamics,” 12, Sen, Greiner, 550pp  (link);

“Classical Mechanics,” 43, M1, Goldstein, 370pp  (link);

Post-Requisites : “Supersymmetric Gauge Field Theory and String Theory,” 143, PhD1, Bailin, Love, 320pp  (link);


COURSE : “Lie Groups : An Introduction through Linear Groups,” 58, M1, Rossman, 260pp  (link);

Course Number : 58

Level : M1

Author(s) : Rossmann

Pre-Requisites : “The Lie Algebras su(N) : An Introduction,” 56, M1, Pfeifer, 110pp  (link);

Post-Requisites : “Lie Groups, Lie Algebras,” 60, M1, Hausner, Schwartz,  230pp  (link);


COURSE : “Algebraic Topology : A First Course,” 59, M1, Fulton, 420pp  (link);

Course Number : 59

Level : M1

Author(s) : Fulton

Pre-Requisites : “General Topology,” 26, Sen-M1, Lipschutz, 230pp  (link);

Post-Requisites : “An Introduction to Algebraic Topology,” 63, M1, Wallace, 200pp  (link);


COURSE : “Lie Groups, Lie Algebras,” 60, M1, Hausner, Schwartz,  230pp  (link);

Course Number : 60

Level : M1

Author(s) : Hausner, Schwartz

Pre-Requisites : “Lie Groups : An Introduction through Linear Groups,” 58, M1, Rossman, 260pp  (link);

Post-Requisites : “Semi-Simple Lie Algebras and their Representations,” 62, M1, Cahn, 150pp  (link);


COURSE : “An Introduction to Differentiable Manifolds and Riemannian Geometry,” 61, M1, Boothby, 400pp  (link);

Course Number : 61

Level : M1

Author(s) : Boothby

Pre-Requisites : “Differential Geometry,” 21, Sen-M1, Lipschutz, 270pp  (link);

Post-Requisites : “Modern Differential Geometry for Physicists,” 76, M2, Isham, 280pp  (link);


COURSE : “Semi-Simple Lie Algebras and their Representations,” 62, M1, Cahn, 150pp  (link);

Course Number : 62

Level : M1

Author(s) : Cahn

Pre-Requisites : “Lie Groups, Lie Algebras,” 60, M1, Hausner, Schwartz,  230pp  (link);

Post-Requisites : “Introduction to Lie Groups and Lie Algebras,” 64, M1, Sagle, Walde, 350pp  (link);


COURSE : “An Introduction to Algebraic Topology,” 63, M1, Wallace, 200pp  (link);

Course Number : 63

Level : M1

Author(s) : Wallace

Pre-Requisites : “Algebraic Topology : A First Course,” 59, M1, Fulton, 420pp  (link);

Post-Requisites : “An Introduction to Algebraic Topology,”  65, M1, Rotman, 420pp  (link);


COURSE : “Introduction to Lie Groups and Lie Algebras,” 64, M1, Sagle, Walde, 350pp  (link);

Course Number : 64

Level : M1

Author(s) : Sagle, Walde

Pre-Requisites : Course 62 : “Semi-Simple Lie Algebras and their Representations,” 62, M1, Cahn, 150pp  (link);

Post-Requisites : “Lie Groups, Lie Algebras, and their Representations,” 94, M2, Varadarajan, 420pp  (link);


COURSE : “An Introduction to Algebraic Topology,”  65, M1, Rotman, 420pp  (link);

Course Number : 65

Level : M1

Author(s) : Rotman

Pre-Requisites : “An Introduction to Algebraic Topology,” 63, M1, Wallace, 200pp  (link);

Post-Requisites : “Introduction to Topological Manifolds,” 68, M1, Lee, 360pp  (link);


COURSE : “Computability and Solvability,” 66, M1, Davis, 230pp  (link);

Course Number : 66

Level : M1

Author(s) : Davis

Pre-Requisites : “Introduction to the Theory of Computation,” 3, Sen-M1, Sipser, 420pp    (link);   (videolink);

Post-Requisites : “Computability,” 148, PhD1, Tourlakis, 550pp  (link);

“On Formally Undecidable Propositions of Principia Mathematica and Related Systems,” 149, PhD1, Godel, 70pp  (link);


COURSE : “Differential Topology First Steps,” 67, M1, Wallace, 130pp  (link);

Course Number : 67

Level : M1

Author(s) : Wallace

Pre-Requisites : “General Topology,” 26, Sen-M1, Lipschutz, 230pp  (link);

“An Introduction to Differentiable Manifolds and Riemannian Geometry,” 61, M1, Boothby, 400pp  (link);

Post-Requisites : none


COURSE : “Introduction to Topological Manifolds,” 68, M1, Lee, 360pp  (link);

Course Number : 68

Level : M1

Author(s) : Lee

Pre-Requisites : “An Introduction to Algebraic Topology,”  65, M1, Rotman, 420pp  (link);

Post-Requisites : “Algebraic Topology : Homology & Cohomology,” 116, M2, Wallace, 270pp  (link);


COURSE : “Algebraic Geometry : A First Course,” 69, M1, Harris, 310pp  (link);

Course Number : 69

Level : M1

Author(s) : Harris

Pre-Requisites : “Undergraduate Algebraic Geometry,” 54, M1, Reid, 130pp  (link);

Post-Requisites : “An Invitation to Algebraic Geometry,”  104, M2, Smith et al, 150pp  (link);

“Algebraic Geometry,” 107, M2, Hartshorne, 460pp  (link);


COURSE : “Quantum Field Theory,” 70, M2, Mandl, Shaw, 350pp  (link);

Course Number : 70

Level : M2

Author(s) : Mandl, Shaw

Pre-Requisites : “Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

“Quantum Field Theory Demystified,”  35, Sen-M1, McMahon, 280pp  (link);

Post-Requisites : “Gauge Theory of Weak Interactions,” 82, M2, Greiner, Muller, 300pp  (link);


COURSE : “A Course in the Theory of Groups,” 71, M2, Robinson, 460pp  (link);

Course Number : 71

Level : M2

Author(s) : Robinson

Pre-Requisites : “A Course in Group Theory,” 6, Sen-M1, Humphreys, 270pp  (link);

Post-Requisites :  “Finite Group Theory,” 127, PhD1, Aschbacher, 270pp  (link);


COURSE : “The Meaning of Quantum Theory,” 72, M1-M2, Baggott, 220pp  (link);

Course Number : 72

Level : M1-M2

Author(s) : Baggott

Pre-Requisites : “Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

Post-Requisites : Conceptual Foundations of Quantum Mechanics,” 73b, M2, d’Espagnat, 350pp  (link);


COURSE : “Computability, Complexity, and Languages : Fundamentals of Theoretical Computer Science,” 73, M1-M2, Davis et al, 590pp  (link);

Course Number : 73

Level : M1-M2

Author(s) : Davis

Pre-Requisites : “Introduction to the Theory of Computation,” 3, Sen-M1, Sipser, 420pp    (link);   (videolink);

Post-Requisites : “Computability and Solvability,” 66, M1, Davis, 230pp  (link);


COURSE : “Conceptual Foundations of Quantum Mechanics,” 73b, M2, d’Espagnat, 350pp  (link);

Course Number : 73b

Level : M2

Author(s) : d’Espagnat

Pre-Requisites : “The Meaning of Quantum Theory,” 72, M1-M2, Baggott, 220pp  (link);

Post-Requisites : “Philosophical Consequences of Quantum Theory : Reflections on Bell’s Theorem,” 77, M2, Cushing, 300pp  (link);


COURSE : “Knots and Physics,” 74, M2, Kauffman, 770pp  (link);

Course Number : 74

Level : M2

Author(s) : Kauffman

Pre-Requisites : “Formal Knot Theory,” 47, M1, Kauffman, 250pp  (link);

Post-Requisites : none


COURSE : “Quantum Computing : A Short Course from Theory to Experiment,” 75, M1, Stolze, Suter, 220pp  (link);

Course Number : 75

Level : M1

Author(s) : Stolze, Suter

Pre-Requisites : “Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

Post-Requisites : “Topological Quantum Computation,” 195, PhD2, Wang, 110pp  (link);


COURSE : “Modern Differential Geometry for Physicists,” 76, M2, Isham, 280pp  (link);

Course Number : 76

Level : M2

Author(s) : Isham

Pre-Requisites : “An Introduction to Differentiable Manifolds and Riemannian Geometry,” 61, M1, Boothby, 400pp  (link);

Post-Requisites : “Differential Forms and Connections,” 83, M2, Darling, 250pp  (link);


COURSE : “Philosophical Consequences of Quantum Theory : Reflections on Bell’s Theorem,” 77, M2, Cushing, 300pp  (link);

Course Number : 77

Level : M2

Author(s) : Cushing

Pre-Requisites : “Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

Post-Requisites : none


COURSE : “Introduction to Lie Algebras and Representation Theory,”  78, M2, Humphreys, 170pp  (link);

Course Number : 78

Level : M2

Author(s) : Humphreys

Pre-Requisites : “Lie Groups, Lie Algebras,” 60, M1, Hausner, Schwartz,  230pp  (link);

Post-Requisites : “Lie Groups, Lie Algebras, and their Representations,” 94, M2, Varadarajan, 420pp  (link);


COURSE : “Introduction to the Theory of Relativity,” 79, M2, Bergmann, Einstein, 300pp  (link);

Course Number : 79

Level : M2

Author(s) : Bergmann, Einstein

Pre-Requisites : “A Short Course in General Relativity,” 42, M1, Foster, Nightingale, 220pp  (link);

Post-Requisites : none


COURSE : “Quantum Paradoxes : Quantum Theory for the Perplexed,”  80, M2, Aharonov, 290pp  (link);

Course Number : 80

Level : M2

Author(s) : Aharonov

Pre-Requisites : “Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

Post-Requisites : none


COURSE : “The Theory of Finite Groups : An Introduction,” 81, M2,  Kurzweil, Stellmacher, 370pp  (link);

Course Number : 81

Level : M2

Author(s) : Kurzweil, Stellmacher

Pre-Requisites : “A Course in the Theory of Groups,” 71, M2, Robinson, 460pp  (link);

Post-Requisites : “Finite Group Theory,” 127, PhD1, Aschbacher, 270pp  (link);


COURSE : “Gauge Theory of Weak Interactions,” 82, M2, Greiner, Muller, 300pp  (link);

Course Number : 82

Level : M2

Author(s) : Greiner, Muller

Pre-Requisites : “Quantum Electrodynamics”  52, M1, Greiner, Reinhardt, 300pp  (link);

Post-Requisites : “Quantum Chromodynamics,” 87, M2, Greiner et al, 550pp  (link);


COURSE : “Differential Forms and Connections,” 83, M2, Darling, 250pp  (link);

Course Number : 83

Level : M2

Author(s) : Darling

Pre-Requisites : “Modern Differential Geometry for Physicists,” 76, M2, Isham, 280pp  (link);

Post-Requisites : “Topics in Contemporary Mathematical Physics,” 118, M2, Lam, 580pp  (link);


COURSE : “Quantum Mechanics : Historical Contingency and the Copenhagen Hegemony,” 84, M2, Cushing, 270pp  (link);

Course Number : 84

Level : M2

Author(s) : Cushing

Pre-Requisites : “Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

Post-Requisites : none


COURSE : “Introduction to Smooth Manifolds,” 85, M2, Lee, 600pp  (link);

Course Number : 85

Level : M2

Author(s) : Lee

Pre-Requisites : “Modern Differential Geometry for Physicists,” 76, M2, Isham, 280pp  (link);

Post-Requisites : “Knots, Links, Braids and 3-Manifolds : An Introduction to the New Invariants in Low-Dimensional Topology,” 153, PhD1, Prasolov, Sossinsky, 230pp  (link);


COURSE : “The Einstein, Podolsky, and Rosen Paradox in Atomic, Nuclear and Particle Physics,” 86, M2, Afriat, 240pp  (link);

Course Number : 86

Level : M2

Author(s) : Afriat

Pre-Requisites :“Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

Post-Requisites : none


COURSE : “Quantum Chromodynamics,” 87, M2, Greiner et al, 550pp  (link);

Course Number : 87

Level : M2

Author(s) : Greiner et al

Pre-Requisites : “Gauge Theory of Weak Interactions,” 82, M2, Greiner, Muller, 300pp  (link);

Post-Requisites : “Particle Physics : A Comprehensive Introduction,” 91, M2, Seiden, 450pp  (link);


COURSE : “Algebra : A Graduate Course,”  88, M2, Isaacs, 500pp  (link);

Course Number : 88

Level : M2

Author(s) : Isaacs

Pre-Requisites : “Basic Abstract Algebra,” 8, M1, Ash, 400pp  (link);

Post-Requisites : “Categories for the Working Mathematician,” 109, M2, MacLane, 290pp  (link);


COURSE : “Quantum Paradoxes and Physical Reality,” 89, M2, Selleri, 360pp  (link);

Course Number : 89

Level : M2

Author(s) : Selleri

Pre-Requisites : “Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

Post-Requisites : none


COURSE : “Foundations of Differentiable Manifolds and Lie Groups,” 90, M2, Warner, 260pp  (link);

Course Number : 90

Level : M2

Author(s) : Warner

Pre-Requisites : “Introduction to Lie Algebras and Representation Theory,”  78, M2, Humphreys, 170pp  (link);

Post-Requisites : “Lie Groups, Lie Algebras, and their Representations,” 94, M2, Varadarajan, 420pp  (link);


COURSE : “Particle Physics : A Comprehensive Introduction,” 91, M2, Seiden, 450pp  (link);

Course Number : 91

Level : M2

Author(s) : Seiden

Pre-Requisites : “The Ideas of Particle Physics,” 55, M1, Coughlan, Dodd, 240pp  (link);

Post-Requisites : “An Introduction to the Standard Model of Particle Physics,” 95, M2, Cottingham, Greenwood, 230pp  (link);


COURSE : “Character Theory of Finite Groups,” 92, M2, Isaacs, 290pp  (link);

Course Number : 92

Level : M2

Author(s) : Isaacs

Pre-Requisites : “Representations and Characters of Groups,” 13, M1,  James, Liebeck, 410pp  (link);

Post-Requisites : “Finite Groups,” 135, PhD1, Gorenstein, 500pp  (link);


COURSE : “Complexity Theory,” 93, M2, Wegener, 290pp  (link);

Course Number : 93

Level : M2

Author(s) : Wegener

Pre-Requisites : “Introduction to the Theory of Computation,” 3, Sen-M1, Sipser, 420pp    (link);   (videolink);

Post-Requisites : “Computability,” 148, PhD1, Tourlakis, 550pp  (link);


COURSE : “Lie Groups, Lie Algebras, and their Representations,” 94, M2, Varadarajan, 420pp  (link)

Course Number : 94

Level : M2

Author(s) : Varadarajan

Pre-Requisites : “Foundations of Differentiable Manifolds and Lie Groups,” 90, M2, Warner, 260pp  (link);

Post-Requisites : “Representation Theory : A First Course,” 99, M2, Fulton, Harris, 540pp  (link);


COURSE : “An Introduction to the Standard Model of Particle Physics,” 95, M2, Cottingham, Greenwood, 230pp  (link);

Course Number : 95

Level : M2

Author(s) : Cottingham, Greenwood

Pre-Requisites : “Particle Physics : A Comprehensive Introduction,” 91, M2, Seiden, 450pp  (link);

Post-Requisites : “Gauge Theories in Particle Physics,” 110, M2, Aitchison, Hey, 550pp  (link);


COURSE : “Testing Quantum Mechanics on New Ground,” 96, M2, Ghose, 180pp   (link);

Course Number : 96

Level : M2

Author(s) : Ghose

Pre-Requisites : “Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

Post-Requisites : none


COURSE : “Spinors in Physics,” 97, M2, Hladik, 220pp  (link);

Course Number : 97

Level : M2

Author(s) : Hladik

Pre-Requisites : “Lie Groups, Lie Algebras, and their Representations,” 94, M2, Varadarajan, 420pp  (link);

Post-Requisites : “Notes on Seiberg-Witten Theory,” 191, PhD2, Nicolaescu, 470pp  (link);


COURSE : “Understanding Quantum Mechanics,” 98, M2, Omnes, 300pp  (link);

Course Number : 98

Level : M2

Author(s) : Omnes

Pre-Requisites : “Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

Post-Requisites : none


COURSE : “Representation Theory : A First Course,” 99, M2, Fulton, Harris, 540pp  (link);

Course Number : 99

Level : M2

Author(s) : Fulton, Harris

Pre-Requisites : “Lie Groups, Lie Algebras, and their Representations,” 94, M2, Varadarajan, 420pp  (link);

Post-Requisites : “String Theory : Vol. 1, An Introduction to the Bosonic String,” 147, PhD1, Polchinski, 360pp  (link);


COURSE : “Lorentzian Wormholes : From Einstein to Hawking,” 100, M2, Visser, 370pp  (link);

Course Number : 100

Level : M2

Author(s) : Visser

Pre-Requisites : “Introduction to the Theory of Relativity,” 79, M2, Bergmann, Einstein, 300pp  (link);

Post-Requisites : “Black Hole Physics : Basic Concepts and New Developments,” 169, PhD1, Frolov, Novikov, 710pp  (link);


COURSE : “Beyond Measure : Modern Physics, Philosophy and the Meaning of Quantum Theory,” 101, M2, Baggott, 360pp  (link);

Course Number : 101

Level : M2

Author(s) : Baggott

Pre-Requisites : “Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

Post-Requisites : none


COURSE : “Symmetries, Lie Algebras and Representations : A Graduate Course for Physicists,” 102, M2, Fuchs, Schweigert, 420pp  (link);

Course Number : 102

Level : M2

Author(s) : Fuchs, Schweigert

Pre-Requisites : “Lie Groups, Lie Algebras, and their Representations,” 94, M2, Varadarajan, 420pp  (link);

Post-Requisites : “String Theory : Vol. 1, An Introduction to the Bosonic String,” 147, PhD1, Polchinski, 360pp  (link);


COURSE : “The Quantum Challenge : Modern Research on the Foundations of Quantum Mechanics,” 103, M2, Greenstein, 210pp  (link);

Course Number : 103

Level : M2

Author(s) : Greenstein

Pre-Requisites : “Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

Post-Requisites : none


COURSE : “An Invitation to Algebraic Geometry,”  104, M2, Smith et al, 150pp  (link);

Course Number : 104

Level : M2

Author(s) : Smith et al

Pre-Requisites : “Algebraic Geometry : A First Course,” 69, M1, Harris, 310pp  (link);

Post-Requisites : “Algebraic Geometry,” 107, M2, Hartshorne, 460pp  (link);


COURSE : “Commutative Algebra, Vol. 1,”  105, M2, Zariski, Samuel, 320pp  (link);

Course Number : 105

Level : M2

Author(s) : Zariski, Samuel

Pre-Requisites : “Algebra : A Graduate Course,” 88, M2, Isaacs, 500pp  (link);

Post-Requisites : “Commutative Algebra, Vol. 2,” 111, M2, Zariski, Samuel, 410pp  (link);


COURSE : “Introduction to Gauge Field Theory,” 106, M2, Bailin, Love, 360pp  (link);

Course Number : 106

Level : M2

Author(s) : Bailin, Love

Pre-Requisites : “Quantum Field Theory,” 70, M2, Mandl, Shaw, 350pp  (link);

Post-Requisites : “Gauge Theories in Particle Physics,” 110, M2, Aitchison, Hey, 550pp  (link);


COURSE : “Algebraic Geometry,” 107, M2, Hartshorne, 460pp  (link);

Course Number : 107

Level : M2

Author(s) : Hartshorne

Pre-Requisites : “Algebraic Geometry : A First Course,” 69, M1, Harris, 310pp  (link);

Post-Requisites : none


COURSE : “Wave-Particle Duality,” 108, M2, Selleri, 300pp  (link);

Course Number : 108

Level : M2

Author(s) : Selleri

Pre-Requisites : “Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

Post-Requisites : none


COURSE : “Categories for the Working Mathematician,” 109, M2, MacLane, 290pp  (link);

Course Number : 109

Level : M2

Author(s) : MacLane

Pre-Requisites : “Algebra : A Graduate Course,” 88, M2, Isaacs, 500pp  (link);

Post-Requisites : “Finite Group Theory,” 127, PhD1, Aschbacher, 270pp  (link);


COURSE : “Gauge Theories in Particle Physics,” 110, M2, Aitchison, Hey, 550pp  (link);

Course Number : 110

Level : M2

Author(s) : Aitchison, Hey

Pre-Requisites : “Introduction to Gauge Field Theory,” 106, M2, Bailin, Love, 360pp  (link);

Post-Requisites : “Gauge Theory of Elementary Particle Physics,” 113, M2, Cheng, Li, 510pp  (link);


COURSE : “Commutative Algebra, Vol. 2,” 111, M2, Zariski, Samuel, 410pp  (link);

Course Number : 111

Level : M2

Author(s) : Zariski, Samuel

Pre-Requisites : “Commutative Algebra, Vol. 1,” 105, M2, Zariski, Samuel, 320pp  (link);

Post-Requisites : “A First Course in Noncommutative Rings,” 123, M2, Lam, 380pp  (link);


COURSE : “Nonlocality in Quantum Physics,” 112, M2, Grib, 220pp  (link);

Course Number : 112

Level : M2

Author(s) : Grib

Pre-Requisites : “Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

Post-Requisites : none


COURSE : “Gauge Theory of Elementary Particle Physics,” 113, M2, Cheng, Li, 510pp  (link);

Course Number : 113

Level : M2

Author(s) : Cheng, Li

Pre-Requisites : “Gauge Theories in Particle Physics,” 110, M2, Aitchison, Hey, 550pp  (link);

Post-Requisites : “Gauge Field Theories,” 158, PhD1, Frampton, 330pp  (link);


COURSE : “Riemann Surfaces,” 114, M2, Farkas, Kra, 350pp  (link);

Course Number : 114

Level : M2

Author(s) : Farkas, Kra

Pre-Requisites : “Complex Variables and Applications,” 28, Sen-M1, Brown, Churchill, 380pp  (link);

Post-Requisites : “Introduction to Riemann Surfaces,” 120, M2, Springer, 300pp   (link);


COURSE : “Speakable and Unspeakable in Quantum Mechanics,” 115, M2, Bell, 210pp  (link);

Course Number : 115

Level : M2

Author(s) : Bell

Pre-Requisites : “Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

Post-Requisites : none


COURSE : “Algebraic Topology : Homology & Cohomology,” 116, M2, Wallace, 270pp  (link);

Course Number : 116

Level : M2

Author(s) : Wallace

Pre-Requisites : “An Introduction to Algebraic Topology,” 63, M1, Wallace, 200pp  (link);

Post-Requisites : “Introduction to Homological Algebra,” 151, PhD1, Weibel, 430pp  (link);


COURSE : “Introduction to Cyclotomic Fields,” 117, M2, Washington, 420pp  (link);

Course Number : 117

Level : M2

Author(s) : Washington

Pre-Requisites : “Introduction to Field Theory,” 31, Sen-M1, Adamson, 170pp  (link);

Post-Requisites : none


COURSE : “Topics in Contemporary Mathematical Physics,” 118, M2, Lam, 580pp  (link);

Course Number : 118

Level : M2

Author(s) : Lam

Pre-Requisites : “A Course in Group Theory,” 6, Sen-M1, Humphreys, 270pp  (link);

“Representations and Characters of Groups,” 13, M1,  James, Liebeck, 410pp  (link);

“Introduction to Lie Groups and Lie Algebras,” 64, M1, Sagle, Walde, 350pp  (link);

Post-Requisites : none


COURSE : “Quantum Measurement of a Single System,” 119, M2, Alter, 120pp  (link);

Course Number : 119

Level : M2

Author(s) : Alter

Pre-Requisites : “Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

Post-Requisites : none


COURSE : “Introduction to Riemann Surfaces,” 120, M2, Springer, 300pp   (link);

Course Number : 120

Level : M2

Author(s) : Springer

Pre-Requisites : “Riemann Surfaces,” 114, M2, Farkas, Kra, 350pp  (link);

Post-Requisites : none


COURSE : “Geometry, Topology and Physics,” 121, M2, Nakahara, 490pp  (link);

Course Number : 121

Level : M2

Author(s) : Nakahara

Pre-Requisites : “Modern Differential Geometry for Physicists,” 76, M2, Isham, 280pp  (link);

“Algebraic Topology : Homology & Cohomology,” 116, M2, Wallace, 270pp  (link);

Post-Requisites : none


COURSE : “From Holomorphic Functions to Complex Manifolds,” 122, M2, Fritzsche, Grauert, 370pp  (link);

Course Number : 122

Level : M2

Author(s) : Fritzsche, Grauert

Pre-Requisites : “Complex Variables and Applications,” 28, Sen-M1, Brown, Churchill, 380pp  (link);

Post-Requisites : “Calabi-Yau Manifolds and Related Geometries,” 157, PhD1, Gross et al, 230pp  (link);


COURSE : “A First Course in Noncommutative Rings,” 123, M2, Lam, 380pp  (link);

Course Number : 123

Level : M2

Author(s) : Lam

Pre-Requisites : “Algebra : A Graduate Course,” 88, M2, Isaacs, 500pp  (link);

Post-Requisites : “Noncommutative Rings,” 125, M2, Herstein, 190pp  (link);


COURSE : “An Invitation to Morse Theory,” 124, M2, Nicolaescu, 230pp  (link);

Course Number : 124

Level : M2

Author(s) : Nicolaescu

Pre-Requisites : “Modern Differential Geometry for Physicists,” 76, M2, Isham, 280pp  (link);

“Algebraic Topology : Homology & Cohomology,” 116, M2, Wallace, 270pp  (link);

Post-Requisites : “Notes on Seiberg-Witten Theory,” 191, PhD2, Nicolaescu, 470pp  (link);


COURSE : “Noncommutative Rings,” 125, M2, Herstein, 190pp  (link);

Course Number : 125

Level : M2

Author(s) : Herstein

Pre-Requisites : “A First Course in Noncommutative Rings,” 123, M2, Lam, 380pp  (link);

Post-Requisites : none


COURSE : “Journeys Beyond the Standard Model,” 126, PhD1, Ramond, 360pp  (link);

Course Number : 126

Level : PhD1

Author(s) : Ramond

Pre-Requisites : “Gauge Theory of Elementary Particle Physics,” 113, M2, Cheng, Li, 510pp  (link);

Post-Requisites : “Supersymmetry in Particle Physics,” 132, PhD1, Aitchison, 210pp  (link);


COURSE : “Finite Group Theory,” 127, PhD1, Aschbacher, 270pp  (link);

Course Number : 127

Level : PhD1

Author(s) : Aschbacher

Pre-Requisites : “The Theory of Finite Groups : An Introduction,” 81, M2,  Kurzweil, Stellmacher, 370pp  (link);

Post-Requisites : “Finite Groups,” 135, PhD1, Gorenstein, 500pp  (link);


COURSE : “Supersymmetry Demystified,” 128, M2, Labelle, 410pp  (link);

Course Number : 128

Level : M1

Author(s) :

Pre-Requisites : “Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

“Statistical Physics,” 27, Sen-M1, Mandl, 370pp  (link);

Post-Requisites : “Supersymmetry in Particle Physics,” 132, PhD1, Aitchison, 210pp  (link);


COURSE : “Measure Theory ,” 129, M2, Doob, 200pp  (link);

Course Number : 129

Level : M2

Author(s) : Doob

Pre-Requisites : “Naïve Set Theory,” 9, Jun-Sen, Halmos, 100pp  (link);

“Introduction to Real Analysis,”  15, Jun-Sen, Stoll, 540pp  (link);

Post-Requisites : Non


COURSE : “Nuclear Models,” 130, M2, Greiner, Maruhn, 360pp  (link);

Course Number : 130

Level : M2

Author(s) : Greiner, Maruhn

Pre-Requisites : “Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

“Quantum Mechanics : Symmetries,” 46, M1, Greiner, Muller, 360pp  (link);

Post-Requisites : None


COURSE : “Simple Groups of Lie Type,” 131, M2, Carter, 310pp  (link);

Course Number : 131

Level : M2

Author(s) : Carter

Pre-Requisites : “Introduction to Lie Algebras and Representation Theory,”  78, M2, Humphreys, 170pp  (link);

Post-Requisites : “Finite Groups,” 135, PhD1, Gorenstein, 500pp  (link);


COURSE : “Supersymmetry in Particle Physics,” 132, PhD1, Aitchison, 210pp  (link);

Course Number : 132

Level : PhD1

Author(s) : Aitchison

Pre-Requisites : “Journeys Beyond the Standard Model,” 126, PhD1, Ramond, 360pp  (link);

“Supersymmetry Demystified,” 128, M2, Labelle  (link);

Post-Requisites : “Supersymmetry for Mathematicians : An Introduction,” 134, PhD1, Varadarajan, 300pp  (link);

“Introduction to Supersymmetry,” 136, PhD1, Freund, 140pp  (link);

“Five Lectures on Supersymmetry,” 138, PhD1, Freed, 110pp  (link);


COURSE : “Infinite Dimensional Lie Algebras,” 133, PhD1, Kac, 350pp  (link);

Course Number : 133

Level : PhD1

Author(s) : Kac

Pre-Requisites : “Lie Groups, Lie Algebras, and their Representations,” 94, M2, Varadarajan, 420pp  (link);

Post-Requisites : none


COURSE : “Supersymmetry for Mathematicians : An Introduction,” 134, PhD1, Varadarajan, 300pp  (link);

Course Number : 134

Level : PhD1

Author(s) : Varadarajan

Pre-Requisites : “Supersymmetry in Particle Physics,” 132, PhD1, Aitchison, 210pp  (link);

Post-Requisites : “Supersymmetry and String Theory : Beyond the Standard Model,” 141, PhD1, Dine, 500pp  (link);


COURSE : “Finite Groups,” 135, PhD1, Gorenstein, 500pp  (link);

Course Number : 135

Level : PhD1

Author(s) : Gorenstein

Pre-Requisites : “Finite Group Theory,” 127, PhD1, Aschbacher, 270pp  (link);

Post-Requisites : “Sporadic Groups,” 137, PhD1, Aschbacher, 300pp  (link);


COURSE : “Introduction to Supersymmetry,” 136, PhD1, Freund, 140pp  (link);

Course Number : 136

Level : PhD1

Author(s) : Freund

Pre-Requisites : “Supersymmetry in Particle Physics,” 132, PhD1, Aitchison, 210pp  (link);

Post-Requisites : “Supersymmetry and String Theory : Beyond the Standard Model,” 141, PhD1, Dine, 500pp  (link);


COURSE : “Sporadic Groups,” 137, PhD1, Aschbacher, 300pp  (link);

Course Number : 137

Level : PhD1

Author(s) : Aschbacher

Pre-Requisites : “Finite Groups,” 135, PhD1, Gorenstein, 500pp  (link);

Post-Requisites : “Group Theory : Birdtracks, Lie’s, and Exceptional Groups,” 139, PhD1, Cvitanovic, 250pp  (link);


COURSE : “Five Lectures on Supersymmetry,” 138, PhD1, Freed, 110pp  (link);

Course Number : 138

Level : PhD1

Author(s) : Freed

Pre-Requisites : “Supersymmetry in Particle Physics,” 132, PhD1, Aitchison, 210pp  (link);

Post-Requisites : “Supersymmetry and String Theory : Beyond the Standard Model,” 141, PhD1, Dine, 500pp  (link);


COURSE : “Group Theory : Birdtracks, Lie’s, and Exceptional Groups,” 139, PhD1, Cvitanovic, 250pp  (link);

Course Number : 139

Level : PhD1

Author(s) : Cvitanovic

Pre-Requisites : “Sporadic Groups,” 137, PhD1, Aschbacher, 300pp  (link);

Post-Requisites : “Quantum Groups,” 142, PhD1, Kassel, 500pp  (link);


COURSE : “String Theory Demystified,” 140, M2-PhD1, McMahon, 290pp  (link);

Course Number : 140

Level : PhD1

Author(s) : McMahon

Pre-Requisites : “Quantum Mechanics,” 16, M1, Mandl, 290pp  (link);

Post-Requisites : “Supersymmetry and String Theory : Beyond the Standard Model,” 141, PhD1, Dine, 500pp  (link);


COURSE : “Supersymmetry and String Theory : Beyond the Standard Model,” 141, PhD1, Dine, 500pp  (link);

Course Number : 141

Level : PhD1

Author(s) : Dine

Pre-Requisites : “Supersymmetry for Mathematicians : An Introduction,” 134, PhD1, Varadarajan, 300pp  (link);

Post-Requisites : “Introduction to Superstrings and M-Theory,” 152, PhD1, Kaku, , 580pp  (link);


COURSE : “Quantum Groups,” 142, PhD1, Kassel, 500pp  (link);

Course Number : 142

Level : PhD1

Author(s) : Kassel

Pre-Requisites : “Introduction to Lie Groups and Lie Algebras,” 64, M1, Sagle, Walde, 350pp  (link);

“Algebra : A Graduate Course,” 88, M2, Isaacs, 500pp  (link);

Post-Requisites : none


COURSE : “Supersymmetric Gauge Field Theory and String Theory,” 143, PhD1, Bailin, Love, 320pp  (link);

Course Number : 143

Level : PhD1

Author(s) : Bailin, Love

Pre-Requisites : “Supersymmetry and String Theory : Beyond the Standard Model,” 141, PhD1, Dine, 500pp  (link);

Post-Requisites : “Introduction to Superstrings and M-Theory,” 152, PhD1, Kaku, , 580pp  (link);


COURSE : “A Taste of Jordan Algebras,” 144, PhD1, McCrimmon, 540pp  (link);

Course Number : 144

Level : PhD1

Author(s) : McCrimmon

Pre-Requisites : “Algebra : A Graduate Course,” 88, M2, Isaacs, 500pp  (link);

Post-Requisites : “An Introduction to Nonassociative Algebras,” 146, PhD1, Schafer, 150pp  (link);


COURSE : “Conformal Field Theory,” 145, PhD1, di Francesco et al, 860pp  (link);

Course Number : 145

Level : PhD1

Author(s) : di Francesco et al

Pre-Requisites : “Statistical Mechanics : An Introduction,” 23, Jun-Sen, Trevena, 140pp  (link);

“Quantum Electrodynamics”  52, M1, Greiner, Reinhardt, 300pp  (link);

“Lie Groups, Lie Algebras,” 60, M1, Hausner, Schwartz,  230pp  (link);

Post-Requisites : “String Theory : Vol. 1, An Introduction to the Bosonic String,” 147, PhD1, Polchinski, 360pp  (link);


COURSE : “An Introduction to Nonassociative Algebras,” 146, PhD1, Schafer, 150pp  (link);

Course Number : 146

Level : PhD1

Author(s) : Schafer

Pre-Requisites : “A Taste of Jordan Algebras,” 144, PhD1, McCrimmon, 540pp  (link);

Post-Requisites : none


COURSE : “String Theory : Vol. 1, An Introduction to the Bosonic String,” 147, PhD1, Polchinski, 360pp  (link);

Course Number : 147

Level : PhD1

Author(s) : Polchinski

Pre-Requisites : “Supersymmetry and String Theory : Beyond the Standard Model,” 141, PhD1, Dine, 500pp  (link);

“Conformal Field Theory,” 145, PhD1, di Francesco et al, 860pp  (link);

Post-Requisites : “String Theory : Vol. 2, Superstring Theory and Beyond,” 150, PhD1, Polchinski, 510pp  (link);


COURSE : “Computability,” 148, PhD1, Tourlakis, 550pp  (link);

Course Number : 148

Level : PhD1

Author(s) : Tourlakis

Pre-Requisites : “Computability and Solvability,” 66, M1, Davis, 230pp  (link);

Post-Requisites : none


COURSE : “On Formally Undecidable Propositions of Principia Mathematica and Related Systems,” 149, PhD1, Godel, 70pp  (link);

Course Number : 149

Level : PhD1

Author(s) : Godel

Pre-Requisites : “Introduction to Mathematical Logic,” 41, Sen-M1, Mendelson, 270pp  (link);

Post-Requisites : none


COURSE : “String Theory : Vol. 2, Superstring Theory and Beyond,” 150, PhD1, Polchinski, 510pp  (link);

Course Number : 150

Level : PhD1

Author(s) : Polchinski

Pre-Requisites : “Supersymmetry and String Theory : Beyond the Standard Model,” 141, PhD1, Dine, 500pp  (link);

“String Theory : Vol. 1, An Introduction to the Bosonic String,” 147, PhD1, Polchinski, 360pp  (link);

Post-Requisites : “Introduction to Superstrings and M-Theory,” 152, PhD1, Kaku, , 580pp  (link);


COURSE : “Introduction to Homological Algebra,” 151, PhD1, Weibel, 430pp  (link);

Course Number : 151

Level : PhD1

Author(s) : Weibel

Pre-Requisites : “Algebra : A Graduate Course,” 88, M2, Isaacs, 500pp  (link);

Post-Requisites : none


COURSE : “Introduction to Superstrings and M-Theory,” 152, PhD1, Kaku, , 580pp  (link);

Course Number : 152

Level : PhD1

Author(s) : Kaku

Pre-Requisites :  “String Theory : Vol. 2, Superstring Theory and Beyond,” 150, PhD1, Polchinski, 510pp  (link);

Post-Requisites : “D-Branes,” 179, Ph, Johnson, 510pp  (link);


COURSE : “Knots, Links, Braids and 3-Manifolds : An Introduction to the New Invariants in Low-Dimensional Topology,” 153, PhD1, Prasolov, Sossinsky, 230pp  (link);

Course Number : 153

Level : PhD1

Author(s) : Prasolov, Sossinsky

Pre-Requisites : “Introduction to Smooth Manifolds,” 85, M2, Lee, 600pp  (link);

Post-Requisites : “Topology of 4-Manifolds,” 155, PhD1, Freedman, Quinn, 250pp  (link);


COURSE : “Renormalization : An Introduction,” 154, PhD1, Salmhofer, 220pp  (link);

Course Number : 154

Level : PhD1

Author(s) : Salmhofer

Pre-Requisites : “Quantum Electrodynamics”  52, M1, Greiner, Reinhardt, 300pp  (link);

Post-Requisites : “Gauge Field Theories,” 158, PhD1, Frampton, 330pp  (link);


COURSE : “Topology of 4-Manifolds,” 155, PhD1, Freedman, Quinn, 250pp  (link);

Course Number : 155

Level : PhD1

Author(s) : Freedman, Quinn

Pre-Requisites : “Knots, Links, Braids and 3-Manifolds : An Introduction to the New Invariants in Low-Dimensional Topology,” 153, PhD1, Prasolov, Sossinsky, 230pp  (link);

Post-Requisites : “The Geometry of Four-Manifolds, 164, PhD2, Donaldson, Kronheimer, 430pp  (link);


COURSE : “Quantum Gauge Theories : A True Ghost Story,” 156, PhD1, Scharf, 240pp  (link);

Course Number : 156

Level : PhD1

Author(s) : Scharf

Pre-Requisites : “Quantum Chromodynamics,” 87, M2, Greiner et al, 550pp  (link);

Post-Requisites : “Gauge Field Theories,” 158, PhD1, Frampton, 330pp  (link);


COURSE : “Calabi-Yau Manifolds and Related Geometries,” 157, PhD1, Gross et al, 230pp  (link);

Course Number : 157

Level : PhD1

Author(s) : Gross et al

Pre-Requisites : “The Geometry of Four-Manifolds, 164, PhD2, Donaldson, Kronheimer, 430pp  (link);

Post-Requisites : “Strings, Conformal Fields, and M-Theory,” 177, PhD2, Kaku, 520pp  (link);


COURSE : “Gauge Field Theories,” 158, PhD1, Frampton, 330pp  (link);

Course Number : 158

Level : PhD1

Author(s) : Frampton

Pre-Requisites : “Quantum Gauge Theories : A True Ghost Story,” 156, PhD1, Scharf, 240pp  (link);

Post-Requisites : “Quarks, Leptons & Gauge Fields,” 160, PhD1, Huang, 330pp  (link);


COURSE : “Finite Simple Groups : An Introduction to their Classification,” 159, PhD1, Gorenstein, 310pp  (link);

Course Number : 159

Level : PhD1

Author(s) : Gorenstein

Pre-Requisites : “Finite Groups,” 135, PhD1, Gorenstein, 500pp  (link);

Post-Requisites : “The Classification of Finite Simple Groups, Vol. 1 : Groups of Noncharacteristic 2 Type,” 161, PhD1, Gorenstein, 470pp  (link);


COURSE : “Quarks, Leptons & Gauge Fields,” 160, PhD1, Huang, 330pp  (link);

Course Number : 160

Level : PhD1

Author(s) : Huang

Pre-Requisites : “Gauge Field Theories,” 158, PhD1, Frampton, 330pp  (link);

Post-Requisites : “Fields, Symmetries, and Quarks,” 162, PhD1, Mosel, 300pp  (link);


COURSE : “The Classification of Finite Simple Groups, Vol. 1 : Groups of Noncharacteristic 2 Type,” 161, PhD1, Gorenstein, 470pp  (link);

Course Number : 161

Level : PhD1

Author(s) : Gorenstein

Pre-Requisites : “Finite Simple Groups : An Introduction to their Classification,” 159, PhD1, Gorenstein, 310pp  (link);

Post-Requisites : “The Classification of Finite Simple Groups : Vol. 2, Groups of Characteristic 2 Type,” 163, PhD2, Aschbacher et al, 310pp  (link);


COURSE : “Fields, Symmetries, and Quarks,” 162, PhD1, Mosel, 300pp  (link);

Course Number : 162

Level : PhD1

Author(s) : Mosel

Pre-Requisites : “Quarks, Leptons & Gauge Fields,” 160, PhD1, Huang, 330pp  (link);

Post-Requisites : “The Theory of Quark and Gluon Interactions,” 165, PhD1, Yndurain, 390pp  (link);


COURSE : “The Classification of Finite Simple Groups : Vol. 2, Groups of Characteristic 2 Type,” 163, PhD2, Aschbacher et al, 310pp  (link);

Course Number : 163

Level : PhD2

Author(s) : Aschbacher et al

Pre-Requisites : “Finite Simple Groups : An Introduction to their Classification,” 159, PhD1, Gorenstein, 310pp  (link);

Post-Requisites : “The Local Structure of Finite Groups of Characteristic 2 Type,” 166, PhD2, Gorenstein, Lyons, 720pp  (link);


COURSE : “The Geometry of Four-Manifolds, 164, PhD2, Donaldson, Kronheimer, 430pp  (link);

Course Number : 164

Level : PhD2

Author(s) : Donaldson, Kronheimer

Pre-Requisites : “Modern Differential Geometry for Physicists,” 76, M2, Isham, 280pp  (link);

Post-Requisites : “Notes on Seiberg-Witten Theory,” 191, PhD2, Nicolaescu, 470pp  (link);


COURSE : “The Theory of Quark and Gluon Interactions,” 165, PhD1, Yndurain, 390pp  (link);

Course Number : 165

Level : PhD1

Author(s) : Yndurain

Pre-Requisites : “Fields, Symmetries, and Quarks,” 162, PhD1, Mosel, 300pp  (link);

Post-Requisites : “Unification and Supersymmetry : The Frontiers of Quark-Lepton Physics,” 167, PhD1, Mohapatra, 410pp  (link);


COURSE : “The Local Structure of Finite Groups of Characteristic 2 Type,” 166, PhD2, Gorenstein, Lyons, 720pp  (link);

Course Number : 166

Level : PhD2

Author(s) : Gorenstein, Lyons

Pre-Requisites : “The Classification of Finite Simple Groups : Vol. 2, Groups of Characteristic 2 Type,” 163, PhD2, Aschbacher et al, 310pp  (link);

Post-Requisites : “The Classification of the Finite Simple Groups : Vol. 1, Overview, Outline of Proof,” 168, PhD2, Gorenstein, Lyons, Solomon, 140pp  (link);


COURSE : “Unification and Supersymmetry : The Frontiers of Quark-Lepton Physics,” 167, PhD1, Mohapatra, 410pp  (link);

Course Number : 167

Level : PhD1

Author(s) : Mohapatra

Pre-Requisites : “The Theory of Quark and Gluon Interactions,” 165, PhD1, Yndurain, 390pp  (link);

Post-Requisites : none


COURSE : “The Classification of the Finite Simple Groups : Vol. 1, Overview, Outline of Proof,” 168, PhD2, Gorenstein, Lyons, Solomon, 140pp  (link);

Course Number : 168

Level : PhD2

Author(s) : Gorenstein, Lyons, Solomon

Pre-Requisites : “The Classification of Finite Simple Groups : Vol. 2, Groups of Characteristic 2 Type,” 163, PhD2, Aschbacher et al, 310pp  (link);

Post-Requisites : “The Classification of the Finite Simple Groups : Vol. 2, General Group Theory,” 170, PhD2, Gorenstein, Lyons, Solomon, 200pp (link);


COURSE : “Black Hole Physics : Basic Concepts and New Developments,” 169, PhD1, Frolov, Novikov, 710pp  (link);

Course Number : 169

Level : PhD1

Author(s) : Frolov, Novikov

Pre-Requisites : “Lorentzian Wormholes : From Einstein to Hawking,” 100, M2, Visser, 370pp  (link);

Post-Requisites : none


COURSE : “The Classification of the Finite Simple Groups : Vol. 2, General Group Theory,” 170, PhD2, Gorenstein, Lyons, Solomon, 200pp (link);

Course Number : 170

Level : PhD2

Author(s) : Gorenstein, Lyons, Solomon

Pre-Requisites : “The Classification of the Finite Simple Groups : Vol. 1, Overview, Outline of Proof,” 168, PhD2, Gorenstein, Lyons, Solomon, 140pp  (link);

Post-Requisites : “The Classification of the Finite Simple Groups : Vol. 3, Almost Simple K-Groups,” 172, PhD2, Gorenstein, Lyons, Solomon, 400pp  (link);


COURSE : “Cosmology,” 171, PhD1, Weinberg, 570pp  (link);

Course Number : 171

Level : PhD1

Author(s) : Weinberg

Pre-Requisites : “The Physics of Stars,” 37, Sen-M1, Phillips, 200pp  (link);

Post-Requisites : none


COURSE : “The Classification of the Finite Simple Groups : Vol. 3, Almost Simple K-Groups,” 172, PhD2, Gorenstein, Lyons, Solomon, 400pp  (link);

Course Number : 172

Level : PhD2

Author(s) : Gorenstein, Lyons, Solomon

Pre-Requisites : “The Classification of the Finite Simple Groups : Vol. 2, General Group Theory,” 170, PhD2, Gorenstein, Lyons, Solomon, 200pp (link);

Post-Requisites : “The Classification of the Finite Simple Groups : Vol. 4, Uniqueness Theorems,” 174, PhD2,  Gorenstein, Lyons, Solomon, 330pp (link);


COURSE : “Differential Topology and Quantum Field Theory,” 173, PhD2, Nash, 360pp  (link);

Course Number : 173

Level : PhD2

Author(s) : Nash

Pre-Requisites : “Modern Differential Geometry for Physicists,” 76, M2, Isham, 280pp  (link);

“Algebraic Geometry,” 107, M2, Hartshorne, 460pp  (link);

“Riemann Surfaces,” 114, M2, Farkas, Kra, 350pp  (link);

“Algebraic Topology : Homology & Cohomology,” 116, M2, Wallace, 270pp  (link);

“An Invitation to Morse Theory,” 124, M2, Nicolaescu, 230pp  (link);

“Conformal Field Theory,” 145, PhD1, di Franceso et al, 860pp  (link);

Post-Requisites : none


COURSE : “The Classification of the Finite Simple Groups : Vol. 4, Uniqueness Theorems,” 174, PhD2,  Gorenstein, Lyons, Solomon, 330pp (link);

Course Number : 174

Level : PhD2

Author(s) : Gorenstein, Lyons, Solomon

Pre-Requisites : “The Classification of the Finite Simple Groups : Vol. 3, Almost Simple K-Groups,” 172, PhD2, Gorenstein, Lyons, Solomon, 400pp  (link);

Post-Requisites : “The Classification of the Finite Simple Groups : Vol. 5, The Generic Case,” 176, PhD2, Gorenstein, Lyons, Solomon, 460pp  (link);


COURSE : “Supersymmetry and Supergravity,” 175, PhD2, Wess, Bagger, 260pp  (link);

Course Number : 175

Level : PhD2

Author(s) : Wess, Bagger

Pre-Requisites : “Supersymmetry for Mathematicians : An Introduction,” 134, PhD1, Varadarajan, 300pp  (link);

Post-Requisites : none


COURSE : “The Classification of the Finite Simple Groups : Vol. 5, The Generic Case,” 176, PhD2, Gorenstein, Lyons, Solomon, 460pp  (link);

Course Number : 176

Level : PhD2

Author(s) : Gorenstein, Lyons, Solomon

Pre-Requisites : “The Classification of the Finite Simple Groups : Vol. 4, Uniqueness Theorems,” 174, PhD2,  Gorenstein, Lyons, Solomon, 330pp  (link);

Post-Requisites : “The Classification of the Finite Simple Groups : Vol. 6, The Special Odd Case,” 178, PhD2,  Gorenstein, Lyons, Solomon, 520pp  (link);


COURSE : “Strings, Conformal Fields, and M-Theory,” 177, PhD2, Kaku, 520pp  (link);

Course Number : 177

Level : PhD2

Author(s) : Kaku

Pre-Requisites : “Introduction to Superstrings and M-Theory,” 152, PhD1, Kaku, , 580pp  (link);

Post-Requisites : none


COURSE : “The Classification of the Finite Simple Groups : Vol. 6, The Special Odd Case,” 178, PhD2,  Gorenstein, Lyons, Solomon, 520pp  (link);

Course Number : 178

Level : PhD2

Author(s) : Gorenstein, Lyons, Solomon

Pre-Requisites : “The Classification of the Finite Simple Groups : Vol. 5, The Generic Case,” 176, PhD2, Gorenstein, Lyons, Solomon, 460pp  (link);

Post-Requisites : “Twelve Sporadic Groups,” 180, PhD2, Griess, 150pp  (link);


COURSE : “D-Branes,” 179, PhD2, Johnson, 510pp  (link);

Course Number : 179

Level : PhD2

Author(s) : Johnson

Pre-Requisites : “Introduction to Superstrings and M-Theory,” 152, PhD1, Kaku, , 580pp  (link);

Post-Requisites : “Gravity and Strings,” 181, PhD2, Ortin, 650pp  (link);


COURSE : “Twelve Sporadic Groups,” 180, PhD2, Griess, 150pp  (link);

Course Number : 180

Level : PhD2

Author(s) : Griess

Pre-Requisites : “The Classification of the Finite Simple Groups : Vol. 6, The Special Odd Case,” 178, PhD2,  Gorenstein, Lyons, Solomon, 520pp  (link);

Post-Requisites : “Theory of Finite Simple Groups,” 183, PhD2, Michler, 640pp  (link);


COURSE : “Gravity and Strings,” 181, PhD2, Ortin, 650pp  (link);

Course Number : 181

Level : PhD2

Author(s) : Ortin

Pre-Requisites : “Introduction to Superstrings and M-Theory,” 152, PhD1, Kaku, , 580pp  (link);

Post-Requisites : none


COURSE : “Quantum Gravity,” 182, PhD2, Rovelli, 420pp  (link);

Course Number : 182

Level : PhD2

Author(s) : Rovelli

Pre-Requisites : “Introduction to Superstrings and M-Theory,” 152, PhD1, Kaku, , 580pp  (link);

Post-Requisites : none


COURSE : “Theory of Finite Simple Groups,” 183, PhD2, Michler, 640pp  (link);

Course Number : 183

Level : PhD2

Author(s) : Michler

Pre-Requisites : “Twelve Sporadic Groups,” 180, PhD2, Griess, 150pp  (link);

Post-Requisites : “Theory of Finite Simple Groups II, Commentary on the Classification Problems,” 185, PhD2, Michler, 720pp  (link);


COURSE : “String Theory and M-Theory : A Modern Introduction,” 184, PhD2, Becker, 690pp  (link);

Course Number : 180

Level : PhD2

Author(s) : Becker

Pre-Requisites : “Introduction to Superstrings and M-Theory,” 152, PhD1, Kaku, , 580pp  (link);

Post-Requisites : none


COURSE : “Theory of Finite Simple Groups II, Commentary on the Classification Problems,” 185, PhD2, Michler, 720pp  (link);

Course Number : 185

Level : PhD2

Author(s) : Michler

Pre-Requisites : “Theory of Finite Simple Groups,” 183, PhD2, Michler, 640pp  (link);

Post-Requisites : “Geometry of Sporadic Groups,” 190, PhD2, Ivanov, 400pp  (link);


COURSE : “The Finite Simple Groups,” 186, PhD2, Wilson, 280pp  (link);

Course Number : 186

Level : PhD2

Author(s) : Wilson

Pre-Requisites : “Theory of Finite Simple Groups,” 183, PhD2, Michler, 640pp  (link);

Post-Requisites : none


COURSE : “Vertex Operator Algebras and the Monster,” 187, PhD2, Frenkel et al, 480pp  (link);

Course Number : 187

Level : PhD2

Author(s) : Frenkel et al

Pre-Requisites : “Theory of Finite Simple Groups,” 183, PhD2, Michler, 640pp  (link);

Post-Requisites : none


COURSE : “Moonshine Beyond the Monster : The Bridge Connecting Algebra, Modular Forms and Physics, 188, PhD2, Gannon, 430pp  (link);

Course Number : 188

Level : PhD2

Author(s) : Gannon

Pre-Requisites : “Theory of Finite Simple Groups,” 183, PhD2, Michler, 640pp  (link);

Post-Requisites : none


COURSE : “The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds,” 189, PhD2, Morgan, 130pp  (link);

Course Number : 189

Level : PhD2

Author(s) : Morgan

Pre-Requisites : “Introduction to Superstrings and M-Theory,” 152, PhD1, Kaku, , 580pp  (link);

Post-Requisites : “Notes on Seiberg-Witten Theory,” 191, PhD2, Nicolaescu, 470pp  (link);


COURSE : “Geometry of Sporadic Groups,” 190, PhD2, Ivanov, 400pp  (link);

Course Number : 190

Level : PhD2

Author(s) : Ivanov

Pre-Requisites : “Theory of Finite Simple Groups II, Commentary on the Classification Problems,” 185, PhD2, Michler, 720pp  (link);

Post-Requisites : none


COURSE : “Notes on Seiberg-Witten Theory,” 191, PhD2, Nicolaescu, 470pp  (link);

Course Number : 191

Level : PhD2

Author(s) : Nicolaescu

Pre-Requisites : “From Holomorphic Functions to Complex Manifolds,” 122, M2, Fritzsche, Grauert, 370pp  (link);

“The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds,” 189, PhD2, Morgan, 130pp  (link);

Post-Requisites : “Monopoles and Three-Manifolds,” 192, PhD2,  Kronheimer, Mrowka, 780pp  (link);


COURSE : “Monopoles and Three-Manifolds,” 192, PhD2,  Kronheimer, Mrowka, 780pp  (link);

Course Number : 192

Level : PhD2

Author(s) : Kronheimer, Mrowka

Pre-Requisites : “Notes on Seiberg-Witten Theory,” 191, PhD2, Nicolaescu, 470pp  (link);

Post-Requisites : none


COURSE : “Frobenius Algebras and 2D Topological Quantum Field Theories,” 193, PhD2, Kock, 230pp  (link);

Course Number : 193

Level : PhD2

Author(s) : Kock

Pre-Requisites : “Algebra : A Graduate Course,” 88, M2, Isaacs, 500pp  (link);

“Categories for the Working Mathematician,” 109, M2, MacLane, 290pp  (link);

“An Invitation to Morse Theory,” 124, M2, Nicolaescu, 230pp  (link);

Post-Requisites : none


COURSE : “Topological Quantum Field Theory and Four Manifolds,” 194, PhD2, 210pp  Labastida  (link);

Course Number : 194

Level : PhD2

Author(s) : Labastida

Pre-Requisites : “Frobenius Algebras and 2D Topological Quantum Field Theories,” 193, PhD2, Kock, 230pp  (link);

Post-Requisites :  “Topological Quantum Computation,” 195, PhD2, Wang, 110pp  (link);


COURSE : “Topological Quantum Computation,” 195, PhD2, Wang, 110pp  (link);

Course Number : 195

Level : PhD2

Author(s) : Wang

Pre-Requisites : “Topological Quantum Field Theory and Four Manifolds,” 194, PhD2, 210pp  Labastida  (link);

Post-Requisites : “Introduction to Topological Quantum Computation,” 196, PhD, Pachos, 200pp  (link);


COURSE : “Introduction to Topological Quantum Computation,” 196, PhD, Pachos, 200pp  (link);

Course Number : 196

Level : PhD2

Author(s) : Pachos

Pre-Requisites : “Topological Quantum Computation,” 195, PhD2, Wang, 110pp  (link);

Post-Requisites : none


 

 

 

 

 

 

 

Advertisements
%d bloggers like this: