profhugodegaris

Species Dominance, Artilects, Artilect War, Cosmists, Terrans, Gigadeath, Essays, Media, etc

PHYSICS and GROUP THEORY (M2, Heine)

Lecture Topic : (Math Physics) PHYSICS and GROUP THEORY (M2, Heine)

Prerequisites : Quantum Mechanics (M1); Finite Group Theory (M1); Lie Algebras (M1);

Recommended Text(s) :

“Group Theory in Quantum Mechanics : An Introduction to its Present Usage”, Volker Heine,Dover, 2007.

Approx price new on Amazon.com (hard copy) :   $7

Approx price second hand on Amazon.com (hard copy) : $8

Availability free on eMule.com (e-format) : Yes

eMule search key word(s) : Heine, Group Theory

Lectures and Links :

—–

Lecture 1  (link)

Ch.1   Symmetry Transformation

—–

Lecture 2  (link)

Ch.2   The Quantum Theory of a Free Atom

—–

Lecture 3  (link)

Ch.3   The Representations of Finite  Groups

—–

Lecture 4 (link)

Ch.4   Further Aspects of the Theory of Free Atoms and Ions

—–

Lecture 5  (link)

Ch.5   The Structure and Vibrations of Molecules

—–

Lecture 6  (link)

Ch.6  SolidStatePhysics

—–

Lecture 7  (link)

Ch.7   Nuclear Physics

—–

Lecture 8  (link)

Ch.8   Relativistic Quantum Mechanics

—–

Lecture 9  (link)

Appendix A :  Matrix Algebra

—–

Lecture 10  (link)

Appendix B :  Homomorphism and Isomorphism

—–

Lecture 11  (link)

Appendix C :  Theorems on Vector Spaces and Group Representations

—–

Lecture 12  (link)

Appendix D :  Schur’s Lemma

—–

Lecture 13  (link)

Appendix E :  Irreducible Representations of Abelian Groups

—–

Lecture 14  (link)

Appendix F :  Momenta and Infinitesimal Transformations

—–

Lecture 15  (link)

Appendix G :  The Simple Harmonic Oscillator

—–

Lecture 16  (link)

Appendix H :  The Irreducible Representations of the Complete Lorentz Group

—–

Lecture 17  (link)

Appendix I :  Table of Wigner Coefficients (jj’mm’|JM)

—–

Lecture 18  (link)

Appendix J :  Notation for the Thirty-Two Crystal Point-Groups

—–

Lecture 19  (link)

Appendix K :  Character Tables for the  Crystal Point-Groups

—–

Lecture 20  (link)

Appendix L :  Character Tables for the Axial Rotation Group and Derived Groups

—–

%d bloggers like this: