profhugodegaris

Species Dominance, Artilects, Artilect War, Cosmists, Terrans, Gigadeath, Essays, Media, etc

PHYSICS and LIE THEORY (M2, Cornwell 2)

Lecture Topic : (Math Physics) PHYSICS and LIE THEORY (M2, Cornwell 2)

Prerequisites : Quantum Mechanics (M1); Group Theory (M1); Lie Algebras (M1);

Recommended Text(s) :

“Group Theory in Physics”, Vol. 2,  J. F. Cornwell, Academic Press, 1984.

Approx price new on Amazon.com (hard copy) :   $118

Approx price second hand on Amazon.com (hard copy) : $30

Availability free on eMule.com (e-format) : Yes

eMule search key word(s) : Cornwell Group Theory

Lectures and Links :

—–

Lecture 10  (link)

Ch.10   The Role of Lie Algebras

—–

Lecture 11  (link)

Ch.11   Relationships Between Lie Groups and Lie Algebras Explored

—–

Lecture 12  (link)

Ch.12   The Three-Dimensional Rotation Groups

—–

Lecture 13  (link)

Ch.13   The Structure of Semi-Simple Lie Algebras

—–

Lecture 14  (link)

Ch.14   Semi-Simple Real Algebras

—–

Lecture 15  (link)

Ch.15   Representations of Semi-Simple Lie Algebras and Groups

—–

Lecture 16  (link)

Ch.16   Developments of the Representation Theory

—–

Lecture 17  (link)

Ch.17   The Homogeneous Lorentz Groups and the Poincare Groups

—–

Lecture 18  (link)

Ch.18   Global Internal Symmetries of Elementary Particles

—–

Lecture 19  (link)

Ch.19   Gauge Theories of Elementary Particles

—–

Lecture 20  (link)

Appendix E : Proofs of Certain Theorems on Lie Groups and Lie Algebras

—–

Lecture 21  (link)

Appendix F : Properties of the Simple Complex Lie Algebras

—–

Lecture 22  (link)

Appendix G : The Classical Compact Simple Real Lie Algebras

—–

Lecture 23  (link)

Appendix H : The Universal linear Groups G, their Centers Z(G) and the Kernels Ker G(G)

—–

Lecture 24  (link)

Appendix I : Weights of the Irreducible Representations of the Simple Complex Lie Algebras

—–

Lecture 25  (link)

Appendix J : The Theory of Lie Groups in Terms of Analytic Manifolds

—–

Links to Other Lecturers on this Topic :

%d bloggers like this: