profhugodegaris

Species Dominance, Artilects, Artilect War, Cosmists, Terrans, Gigadeath, Essays, Media, etc

QUANTUM MECHANICS (M2, Yourgrau)

Lecture Topic : (Math Physics) QUANTUM  MECHANICS (M2, Yourgrau)

Prerequisites : Quantum Mechanics (M1); Nuclear Physics (M1); Classical Mechanics (M1);

Recommended Text(s) :

“Variational Principles in Dynamics and Quantum Theory” Wolfgang Yourgrau &Stanley  Mandelstam,Dover, 1979

Approx price new on Amazon.com (hard copy) :   $8

Approx price second hand on Amazon.com (hard copy) : $8

Availability free on eMule.com (e-format) : Yes

eMule search key word(s) : Yourgrau, Variational Principles

Lectures and Links :

—–

Lecture 1  (link)

Ch.1   Prolegomena

—–

Lecture 2  (link)

Ch.2   Fermat’s Principle of Least Time

—–

Lecture 3  (link)

Ch.3   The Principle of Least Action of Maupertuis

—–

Lecture 4  (link)

Ch.4   The Development of this Principle by Euler and Lagrange

—–

Lecture 5  (link)

Ch.5   The Equations of Lagrange and Hamilton

—–

Lecture 6  (link)

Ch.6  Hamilton’s Principle and the Hamilton-Jacobi Equation

—–

Lecture 7  (link)

Ch.7   Contact Transformation andHamilton’s Canonical Equations

—–

Lecture 8  (link)

Ch.8   Electrodynamics in Hamiltonian Form

—–

Lecture 9  (link)

Ch.9   Resume of  Variational Principles in  Classical Mechanics

—–

Lecture 10  (link)

Ch.10   Relation between Variational Principle and the Older Form of  Quantum Theory

—–

Lecture 11  (link)

Ch.11   Variational Principles and Wave Mechanics

—–

Lecture 12  (link)

Ch.12   The Principles of Feynman and Schwinger in Quantum Mechanics

—–

Lecture 13  (link)

Ch.13   Variational  Principles in Hydrodynamics

—–

Lecture 14  (link)

Ch.14   The Significance of Variational  Principles in Natural  Philosophy

—–

Lecture 15  (link)

Appendix 1 : Proof of the Euler-Lagrange Conditions for an Integral to be  Stationary

—–

Lecture 16  (link)

Appendix 2 : Variational Principles and Chemical  Reactions

—–

Links to Other Lecturers on this Topic :

 

%d bloggers like this: